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H I G H L I G H T S

• A physical based parametric aerosol wet scavenging scheme has been implemented in the WRF-Chem-Solar model.
• The updated scheme improves AOD simulation, reducing BIAS by 20%, with notable enhancements in Central & Eastern China.
• The new scheme significantly amends the positive bias of the GHI by 36.47 %/29.91 % under clear and all sky conditions in China.
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A B S T R A C T

Solar energy emerges as a vital renewable resource with profound implications for future energy consumption. 
To improve the accuracy of global horizontal irradiance (GHI) simulation, this study integrates the Thompson 
and Eidhammer aerosol-aware cloud microphysics scheme with the aerosol module Goddard Ozone Chemistry 
Aerosol Radiation and Transport (GOCART) in the WRF-Solar model. Based on the new coupled aerosol-cloud 
interaction, a physical parametric aerosol wet scavenging scheme is developed to investigate its effects on 
aerosol and GHI simulations. Our results demonstrate that the updated wet removal enhances the spatial rep-
resentation of aerosol optical depth (AOD) across China, particularly in regions influenced by anthropogenic 
aerosols such as Northern, Central and Eastern China. The average absolute mean bias (BIAS) value for AOD 
decreases by 20.00 %, leading to a 36.47 % improvement in reducing the overestimation of GHI under clear sky. 
The most remarkable BIAS reductions occur in Central (104.30 %), Western (45.70 %), and Eastern China (41.42 
%) for GHI under clear sky, especially in high surface solar radiation zones (>500 W/m2). Similar improvements 
are observed for GHI under all-sky conditions, with a national relative improvement of 29.91 %. Central, Eastern, 
and Western China show the most substantial BIAS reductions, with relative decreases of 57.48 %, 50.62 %, and 
32.40 %, respectively. Overall, this study highlights the potential of the enhanced aerosol wet scavenging scheme 
to improve GHI simulation accuracy, providing valuable insights for advancing renewable energy initiatives.

1. Introduction

Solar energy, as a green and renewable energy resource, has 

experienced rapid growth during global energy transitions [1], partic-
ularly in China. Under China’s 2060 carbon neutrality goal, the rapid 
deployment of photovoltaic systems has created an urgent demand for 
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precise surface solar radiation prediction [2]. The global horizontal 
irradiance (GHI) is the first and one of the most essential variables in 
most solar radiation prediction and simulation systems [3]. While GHI 
under clear-sky conditions is known for its abundant solar resources, 
GHI forecasting and simulating under all-sky conditions remains a sig-
nificant challenge [3,4]. Physically-based numerical weather prediction 
(NWP) models are considered the primary method for GHI prediction 
and simulation over temporal and spatial scales exceeding 6 h [5]. 
However, their accuracy is constrained by the performance of the 
simulated aerosol-cloud-radiation processes [6,7].

By perturbing the cloud properties and radiation budget, aerosols 
play a significant role in Earth’s energy balance via aerosol-radiation 
and aerosol-cloud interactions (ARIs/ACIs) [8]. Earlier studies reveal 
that online ARIs/ACIs have superiority in describing the aerosol-cloud- 
radiation process [9–11]. However, they are only considered in NWP 
models that explicitly resolve atmospheric chemistry, which increases 
computational costs and are limited use in the GHI simulation [12].

Furthermore, significant uncertainties remain in the aerosol wet 
scavenging process among regional and global models, which substan-
tially impact the GHI simulation [13,14]. Aerosol wet scavenging, 
including in-cloud and below-cloud removal processes, is the primary 
removal pathway for aerosols. It is typically described as prescribed 
aerosol scavenging ratios to minimize computational burden 
[13,15,16]. However, wet scavenging is highly sensitive to variations in 
chemical species and meteorological conditions, further limiting their 
simulation accuracy [17].

To address these challenges, the Weather Research and Forecasting 
model with solar extensions (WRF-Solar) has been specifically devel-
oped [6]. Its Thompson and Eidhammer aerosol-aware microphysics 
scheme (hereafter referred to as TE14) [18] balances computational cost 
and system complexity and effectively represents aerosol-cloud- 
radiation processes [19]. With aerosol information from a multi-year 
(2001–2007) simulation of the Goddard Chemistry Aerosol Radiation 
and Transport (GOCART) model [20] or outputs from other chemistry 
models, WRF-Solar incorporates indirect aerosol effects, aerosol 
dispersion, transport, and cloud microphysics interactions [21].

Several studies have evaluated the benefits of using the TE14 scheme 
to improve GHI forecasting and simulation accuracy [4,6,22–24]. 
Jimenez et al. [6] found a 23 % relative improvement for GHI compared 
to the official WRF-Solar version which lacks aerosol representation 
under clear sky. Aerosol Optical Depth (AOD) is a critical parameter for 
assessing aerosol optical properties, representing the degree to which 
aerosols attenuate light transmission through scattering or absorption 
[25]. Saide et al. [26] compared this setup with a more complex aerosol- 
cloud-radiation scheme and found similarities in AOD and aerosol im-
pacts on near-storm environments. Weston et al. [24] revealed a better 
representation of realistic values for number concentration, liquid water 
content, mean volumetric diameter, and droplet size distribution in 
Namibia compared to the original version. Jimenez et al. [23] assessed 
its performance on GHI simulation and found a strong spatial correlation 
(over 0.90) with values derived from satellite-derived irradiance.

Other studies have attempted to improve the model’s performance. 
One study firstly coupled the GOCART aerosol mode online with the 
Goddard [27] and the Rapid Radiative Transfer Model for Global Cir-
culation Models (RRTMG) [28] shortwave radiation schemes in WRF- 
Solar, focusing on aerosol-induced direct effects on GHI [29]. Howev-
er, it lacks considering the aerosol indirect effects, as the GOCART model 
only generates mass concentration without number concentrations, the 
latter are necessary for the microphysics scheme. Another study inves-
tigated the real-time indirect effects of dust aerosol by coupling dust 
from the GOCART aerosol model and TE14 microphysics scheme in 
WRF-Chem version 3.8.1 [30], but the other aerosol categories’ infor-
mation is still derived from climatological data mentioned above.

In summary, some limitations still persist. Firstly, the climatological 
aerosol emission data cannot accurately represent the realistic changing 
aerosol level, particularly in highly polluted regions such as North 

China. Previous studies have demonstrated that unrealistic assumptions 
of aerosol will lead to large biases of AOD [31], which is the main source 
of GHI error under clear-sky conditions [32]. Secondly, even with 
aerosol information from GOCART, the scheme lacks a physical-explicit 
representation of wet scavenging. Instead, the default wet scavenging 
coefficients of each species are constant values. Therefore, more modi-
fications are required for a fully coupled simulation.

This study aims to fully couple the TE14 microphysics scheme with 
the GOCART model, integrating the online aerosol-cloud-radiation in-
teractions into the WRF-Solar model (hereafter referred to as WRF- 
Chem-Solar). Furthermore, a physically-based parametric aerosol wet 
scavenging scheme is implemented to further improve its performance. 
This study will contribute to advancing our understanding of the 
updated aerosol-related process and its impact on GHI simulation.

The remainder of the paper is presented as follows. Section 2 de-
scribes the model configuration. Section 3 describes the implementation 
work for coupling the TE14 scheme and the GOCART aerosol model in 
WRF-Solar. Section 4 presents the experimental designs, as well as sat-
ellite and observation datasets used to validate the performance of the 
model. Section 5 presents the results, followed by the conclusions and 
discussions in Section 6.

2. Model description

In this study, Weather Research and Forecasting model coupled with 
Chemistry (WRF-Chem) model version 4.4 is applied [33]. Developed by 
the National Center for Atmospheric Research (NCAR), WRF-Chem is an 
online-coupled mesoscale numerical weather prediction system 
designed to simulate and forecast atmospheric chemical and physical 
processes at regional scales. Further details are provided in the supple-
mentary information. In comparison to the earlier version, which only 
includes water/ice-friendly aerosol in the TE14 scheme, version 4.4 
incorporates a black carbon aerosol category as well as its radiative ef-
fect [33,34]. WRF-Solar is a specialized configuration and augmentation 
of the WRF model [6]. It blends the advantages of the Multi-Sensor 
Advection Diffusion Nowcast (MADCast) [35,36] and implements 
feedback between sub-grid scale clouds and shortwave irradiance 
through a shallow cumulus parameterization [37]. In the frame of the 
original WRF-Solar model, it is not coupled online with the chemistry 
aerosol module. Even when the chemistry module is activated, dis-
crepancies in calculation units between the chemistry and microphysics 
modules prevent the seamless integration of aerosol information into 
cloud microphysics, let alone the updating wet scavenging of aerosols.

This study focuses on the bulk GOCART aerosol model to reduce 
computational costs [38]. The model simulates the mass mixing ratios of 
major tropospheric aerosol components, including sulfate, hydrophobic 
and hydrophilic organic carbon and black carbon (OC1, OC2, BC1, and 
BC2), size-resolved mineral dust and sea salt. These aerosols, which 
serve as dominant cloud condensation nuclei (CCN) and ice condensa-
tion nuclei (IN), play a critical role in cloud processes globally [18].

To relieve the high computational burden and complexity, the TE14 
microphysics scheme simply classifies the aerosols into three types: 
hygroscopic aerosols as “water friendly” aerosols (NWFA), non- 
hygroscopic aerosols as “ice friendly” aerosols (NIFA) and black car-
bon (BC). It specifies the activation of aerosols serving as CCN and IN. 
Then it explicitly predicts the number concentrations of cloud droplets 
and ice crystals by assuming log-normal distributions with characteristic 
diameters and geometric standard deviations [39]. The nucleation of 
dust particles into ice crystals, as described by DeMott et al. [40] is 
employed. By providing a surrogate surface emission and interpolating 
the climatology aerosol fields to the WRF grid pressure levels, the 
number concentrations of aerosols will be updated at each time step 
based on changing meteorological field (such as the wind vector, fall 
speed and interaction with cloud), the concentrations of cloud droplets, 
snow, and graupel are predicted, and the indirect effects of aerosols are 
evaluated [18].
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Generally, the WRF-Chem model relies on a simplified parametric 
wet scavenging scheme with fixed ratios: 0.5 for BC1, OC1, dust and 
dimethylsulphide (DMS), 0.8 for BC2 and OC2, 1 for sea salt and sulfate, 
which proved to result in excessively strong aerosol wet removal in 
earlier studies [41,42]. For example, the ratio for coarse insoluble dust is 
set to 0.4 in the ECHAM5-HAM model, significantly lower than those 
used in existing WRF-Chem configurations [43]. Therefore, a more 
explicit physically-based parametric wet scavenging scheme should be 
developed.

3. Implementation of GOCART–Thompson microphysics scheme

Since the GOCART model does not predict the aerosol number con-
centrations required in the TE14 microphysics scheme, a significant 
challenge in coupling the TE14 scheme with the GOCART model lies in 
converting aerosol mass concentrations into number concentrations of 
NWFA, NIFA and BC used in the TE14 scheme, the overall pattern dia-
gram is shown in Fig. 1.

A lookup table is developed to predict the number concentrations of 
each aerosol. Firstly, the microphysical properties of all the species used 
for the mass-to-number conversion are required, as listed in Table 1. 
These properties include particle density, modal and effective radius, the 
geometric standard deviation of the lognormal size distribution, and the 
upper and lower limits of the particle sizes. All values are derived from 
the Optical Properties of Aerosols and Clouds (OPAC) dataset [44]. In 
the GOCART model, the actual number of aerosol species involved in the 
chemical calculation is fourteen. Specifically, for sea salt, four size bins 
with radius of 0.1 μm–0.5 μm, 0.5 μm–1.5 μm, 1.5 μm–5 μm, and 5 
μm–10 μm are included (SEA1-4). For dust particles, the radius ranges 
from 0.1 μm to 10 μm: 0.1 μm–1 μm, 1 μm–1.8 μm, 1.8 μm–3 μm, 3 μm–6 
μm, and 6 μm–10 μm (DUST1–5). The DUST1 range from 0.1 to 1 μm is 
further divided into four size bins: 0.1 μm–0.18 μm, 0.18 μm–0.3 μm, 
0.3 μm–0.6 μm, and 0.6 μm–1 μm in the related code when calculation 
[45]. All sea salt at coarse mode (SEA 2–4) is aggregated, as is the case 
for BC1 and BC2.

We assume lognormal size distributions with characteristic di-
ameters and geometric standard deviations, as described in Chin et al. 
[39] for the number density calculation of aerosol components, the 
equation can be described as follows [44,46]: 

dNi(r)
dr

=
Ni

̅̅̅̅̅̅̅
2 π

√
rlogσiln10

exp
0.5

(

log
r

r modN,i

logσi

)2

(1) 

where r modN,i represents the mode radius, σi measures the width of the 
distribution, Ni means the total particle number density of each 
component i in particles per size bin, and r is the particle radius per size 
bin.

Then all components have been assumed to be spherical to calculate 
their mass contribution per particle by the following equation: 

qunit =
4
3

πr3ρ (2) 

where qunit represents mass per unit particle for a size bin r, ρ is the 
density of the aerosol particles.

Subsequently, the number concentration per size bin is calculated by 
Ni times qunit . After summing up the number concentrations across all 
size bins, the total number concentration for each species is calculated 
by: 

Ntoti =
∑

Niqunit (3) 

where Ntoti means the total number concentrations for each species 
through all size bins per unit mass. Then a candidate look-up table is 
created to transform the mass concentrations into number concentra-
tions per unit mass, as shown in Table 1.

With the online-calculated mass concentration of aerosol species 
from the GOCART model, we can calculate the final number concen-
trations (Nt) through multiplying the mass concentrations by the num-
ber concentration per unit mass (Ntot) for each time step of the fourteen 
types.

Specifically, in the TE14 scheme, NWFA is calculated by combining 
sulfate, OC1, OC2, and SEA1–4, which are considered the source of CCN. 
NIFA is calculated by accumulating dust particles larger than 0.5 μm 
(diameter), which are seen as the source of IN. Therefore, only dust 
particles diameter larger than 0.5 μm (for dust size in 0.18 μm − 0.3 μm, 
only model radius larger than 0.25 μm is calculated) contribute to NIFA. 
This approach differs from earlier work [30], which summed up all the 
dust as NIFA. Afterward, the time-varying number concentrations of 

Fig. 1. The pattern diagram of the WRF-Chem-Solar model we develop.
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NWFA, NIFA, and BC are obtained by summing up all the related aerosol 
numbers and then passed into the TE14 microphysics scheme. Subse-
quently, they will be translated into CCN and IN using a look-up table of 
activated fraction determined by the model’s predicted temperature, 
vertical velocity, number of available aerosols, predetermined values of 
hygroscopicity parameter and aerosol mean radius [18].

During each time step of the cloud microphysical processes calcu-
lation, the number concentrations of NWFA, NIFA, and BC are updated, 
and the online aerosol-cloud interaction is activated. Then a physically- 
based wet scavenging scheme is activated to calculate the aerosol loss 
related to microphysical processes. Descriptions of the process rate 
terms for NWFA and NIFA can be found in Eqs. (4–5) below. Further 
detail on the governing conservation equation can be found in [18]. 

dNwfa

dt
=−

( rain,snow,graupel
collectingaerosols

)

−

(homogeneousnucleated
deliquescedaerosols

)

−

( CCN
activation

)

+

( cloudandrain
evaporation

)

+

( surface
emissions

) (4) 

dNifa

dt
=

( rain, snow, graupel
collecting aerosols

)

−

( IN
activation

)

+

( cloud ice
sublimation

)

+

( surface
emissions

)

(5) 

where Nwfa and Nifa represent the aerosol number concentration. In Eqs. 
(4), the first term on the right-hand side represents the removal of 
aerosols by precipitation scavenging. The second term means the ho-
mogeneous nucleation of deliquescenced aerosols which is returned to 
Nwfa. The third term represents the loss of aerosols due to activation as 
CCN. The fourth term shows aerosols gain due to the evaporation of 
cloud droplets and raindrops. The fifth shows aerosol from surface 
emissions. The content of Eqs. (5) is similar and will not be repeated 
here.

As mentioned earlier, wet deposition is highly sensitive to the 
chemical species retained during cloud drop freezing. However, even 
when coupling the GOCART model with the TE14 scheme, the removal 
of aerosol information is not updated in the GOCART model because 
these changes are not directly considered in the TE14 (which calculates 
only NWFA, NIFA, and BC), leading to mismatches between the two 
processes. In the default WRF-Chem version, it uses a simplified resolved 
wet scavenging scheme (wetscav_onoff = − 1). Actually, the wet scav-
enging coefficients of aerosols vary with time step, meaning a purely 
empirical formula may lack physical meaning and fail to account for the 
characteristics of each aerosol type and the regional differences in 
meteorology.

A simple yet more explicit physically-based parametric wet scav-
enging scheme is embedded in the TE14 module to identify the rate of 

wet removal for each particle. For the new parameterization, scavenging 
ratios for each aerosol type are diagnosed by comparing with the aerosol 
number concentrations before and after the microphysical process. To 
isolate the microphysical processes involved, we calculated the ratio of 
NWFA, NIFA, and BC e before and after entering microphysical pro-
cesses each time step, and assumed it as the same ratio for the removal of 
the associated aerosol species. For example, all related aerosols (sulfate, 
OC and sea salt) in the NWFA share the same removal ratio. Next, the 
aerosols are recalculated into mass concentration needed in the 
GOCART model. For aerosol sharing muti-size bins, their weights at each 
time step are also considered. For example, SEA2–4 are calculated 
separately in the chemistry module but combined in the microphysics 
module. The equation for converting number concentration to mass 
concentration can be described as follows: 

chemsea k,j+1 =
aerosea k,j+1

1E− 6rhoj+1
×

Ntsea2,j + Ntsea3,j + Ntsea4,j

Ntseak ,j
(6) 

where chem represents the mass concentration of aerosol species 
calculated in the chemistry process (units: ug/kg), aero refers to the mass 
concentration participating in the microphysical process (units: g/m3), k 
denotes the type of the sea salt (k = 2,3,4), rho means the density of air 
(units: kg/m3), Nt is the number concentrations (units: #/g), and j and 
j + 1 refer to the aerosol concentrations before and after calculations in 
the TE14 scheme. A conversion factor of 1E− 6 is used to translate units 
from aero to chem. Similar calculations have been conducted for all the 
other thirteen aerosols. This approach enables the online evaluation of 
chemical species associated with bulk microphysics, including explicit 
cloud water, cloud droplet nucleation, and ice activation by aerosols. By 
implementing this adaptation of the standard WRF-Solar model, we 
minimize computational cost while incorporating an online aerosol- 
cloud-radiation model.

4. Experimental design and observations

4.1. Experiments design

The model is configured with a domain covering Eastern Asia at a 9 
km horizontal resolution and 45 vertical levels, as depicted in Fig. 2a. 
The top of the model is located at 50 hPa. The initial and boundary 
conditions are derived from the NCEP-FNL (Final) Operational Global 
Analysis data, provided by the National Centers for Environmental 
Prediction (NCEP). This dataset offers global atmospheric fields on a 1◦

× 1◦ grid, updated at 6-h intervals, and integrates observations from 
satellites, radiosondes, and surface stations to ensure high accuracy 
(https://rda.ucar.edu/datasets/ds083.2/, last accessed: 26 June 2024). 
It supplies key variables such as temperature, humidity, and wind 
components, driving the simulation with realistic, time-evolving atmo-
spheric conditions. The anthropogenic aerosol emissions are considered 

Table 1 
Microphysical properties of aerosol components in dry state [44] and its number concentration per unit mass (Ntot).

Aerosol type Standard deviation Mode radius [micron] Minimum radius [micron] Maximum radius [micron] Density [g/cm3] Ntot 
[#/g]

Sulfate 2.03 0.0695 0.005 20.00 1.70 5.85E+13
OC1 2.51 0.4710 0.005 20.00 2.00 1.49E+16
OC2 2.24 0.0212 0.005 20.00 1.80 3.77E+12
BC1 + BC2 2.00 0.0118 0.005 20.00 1.00 7.69E+14
SEA1 2.03 0.2090 0.005 20.00 2.20 4.96E+12
SEA2-4 2.03 1.7500 0.005 60.00 2.20 3.20E+09
DUST1_1 1.95 0.0421 0.005 20.00 2.60 0.0
DUST1_2 1.95 0.0722 0.005 20.00 2.60 4.54E+12
DUST1_3 1.95 0.1354 0.005 20.00 2.60 1.36E+12
DUST1_4 2.00 0.2407 0.005 20.00 2.60 2.09E+11
DUST2 2.00 0.4212 0.005 20.00 2.60 4.13E+10
DUST3 2.00 0.7220 0.005 20.00 2.60 7.76E+9
DUST4 2.15 1.3540 0.005 60.00 2.60 1.26E+9
DUST5 2.15 2.4070 0.005 60.00 2.60 2.04E+08
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by using the latest HTAPv3 mosaic emission inventory for the year 2018 
[47]. GOCART sea salt emissions are chosen in this study. The model 
time step is 30 s, with hourly gridded output to evaluate simulation 
performance.

The key physical and chemical parameterizations applied in the 
simulations are as follows: The effects of aerosol on the radiation 
simulation are calculated by the RRTMG [28]. The Mel-
lor–Yamada–Nakanishi–Niino (MYNN2) scheme is used for the plane-
tary boundary layer parameterization [48]. The moisture convective 
processes are parameterized by the Grell–Freitas scheme [49]. The Noah 
Land Surface Model is used to provide soil temperature and moisture in 
four layers [50]. The Air Force Weather Agency (AFWA) dust emission 
scheme is used [51], which has been demonstrated to well reveal the 
dust cycle [30,52]. A tuning ratio of 2 has been tested to provide the best 
dust simulation performance.

March 2021 is selected as the simulation period due to two signifi-
cant dust events in North China: one from 14 to 18 March and another 
from 26 to 30 March, with the former being considered the most 
intensive dust event in China in the past 10 decade [53]. The simulation 
period spans from 26 February to 31 March 2021, with the first 6 days as 
“spin-up” time. The model is reinitialized daily using the meteorology 
field from FNL to maintain closeness to reality. Results from 4 to 31 
March are analyzed here.

Two numerical experiments are conducted to examine the perfor-
mance of the new aerosol wet scavenging in GHI simulation and the 
related variables in the WRF-Chem-Solar model. Details of the sensi-
tivity tests are summarized in Table 2. The first experiment, named 
Aero_Couple, represents the fully coupled WRF-Chem-Solar with a 
physically-based aerosol wet scavenging scheme developed in this 
study. The second experiment Aero_Half, uses a simple wet scavenging 
scheme in the WRF-Chem-Solar model. Since the aerosol wet scavenging 
ratios are not affected by the aerosol-cloud process, it is therefore named 
Aero_Half. In our simulations, AOD is dynamically computed using 
modeled aerosol concentration profiles and their optical properties at 
550 nm, ensuring comparability with observational data.

4.2. Observations

4.2.1. AOD observations
AOD data are obtained from two ground-based networks: The 

Aerosol Robotic Network (AERONET) and the Sun–Sky Radiometer 
Observation Network (SONET). AERONET is a ground-based globally 
distributed remote sensing network designed for the automatic tracking 
of AOD over extended periods [54]. Data from the AERONET Version 3 
aerosol retrieval algorithm, which has passed the quality control stan-
dard with an uncertainty of ±0.01, are used in this study [55]. Since 
AERONET does not retrieve the AOD at 550 nm (only at 340, 380, 440, 
500, 675, 870, 1020, and 1640 nm), we employ the Ångström law to 
derive AOD at 550 nm from logarithmically interpolating the AOD at 
440 and 675 nm. Subsequently, the AOD at 550 nm are averaged over 1- 
h intervals (30 min before and after each hour) to validate the model 
results. 19 stations are used in this study.

Additionally, 18 observation stations from SONET are included as 
supplementary data sources, with an average minor difference of 0.002 
between the SONET and AERONET [56]. It provides AOD at nine 
channels with center wavelengths of 340, 380, 440, 550, 670, 870, 
1020, and 1640 nm at every 15 min [56,57]. A similar interpolation 
method is applied to SONET data, and averages are calculated over 1-h 
intervals as well.

The AOD observations from AERONET and SONET are widely used 
as a benchmark for validating model performance by providing accu-
rate, ‘ground-truth’ measurements of AOD [58–62]. Consequently, they 
are employed to assess the temporal performance of our model. The 
locations of all stations used can be found in Fig. 2b, indicated by black 
dots.

4.2.2. Moderate resolution imaging Spectroradiometer (MODIS) 
observations

The Moderate Resolution Imaging Spectroradiometer (MODIS) on-
board Aqua and Terra satellites rotating Earth above 705 km. It provides 
global high-resolution cloud and aerosol optical properties every 1–2 
days [63]. Previous studies have demonstrated a strong statistical rela-
tionship between MODIS data and AERONET L2 data [60,64], making 
MODIS a reliable source for global aerosol observations, particularly in 
regions lacking gridded ground-based data [65,66]. We used both Deep 
Blue (DB) and Dark Target (DT) combined AOD L2 collection 6.1 
product at 550 nm from Aqua satellite (MYD04_L2) and Terra satellite 
(MOD04_L2) with the spatial resolution of 10 km × 10 km at nadir 
[67,68]. Data from two satellites has been interpolated into the model 
grid and has been compared with the monthly mean AOD values of the 
model at the spatial scale.

Fig. 2. (a) Simulation domain and terrain height (Units: meters), (b) The zoning map of seven main electricity grids in China in colors and the locations of the AOD 
and GHI monitoring network used in this study.

Table 2 
Summary of the two experiments in this study.

Version Aerosol dataset Online 
Couple

Wet scavenging

Aero_Couple Online 
calculation

√ New wet scavenging scheme

Aero_Half Online 
calculation

√ wetscav_onoff = − 1
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4.2.3. Surface downward solar radiation compositions product (SSRC)
The distribution of GHI is evaluated using data from the Surface 

downward solar radiation compositions (SSRC) near real-time moni-
toring system, which is established over East Asia–Pacific with a spatial- 
temporal resolution of 0.05◦ (10min)− 1 [69]. Derived from Himawari- 
8/9 and Fengyun-4 series data, it fully considers the effects of aerosol 
types, cloud phases, and gas components, and its accuracy of GHI (daily 
mean RMSEs of 19.7 W m− 2) are shown to be significantly better than 
those from CERES, ERA5, and GLASS [69]. The hourly scale GHI data 
(available from www.slrss.cn/care/sp/pc/, last access: 20 June 2024) is 
used to assess the model’s capability to simulate the spatial distribution 
of GHI under both clear-sky and all-sky conditions during the study 
period. The GHI under clear sky are detected by the cloud type seen as 
clear.

4.2.4. Ground-based GHI observations
Observations of GHI across China from the China Meteorological 

Administration (CMA) are utilized for both all-sky and clear-sky sce-
narios. Following rigorous data quality control procedures [70,71], 138 
sites are employed to validate the accuracy of the modeled GHI. The 
locations of all stations are depicted by blue triangles in Fig. 2b.

4.3. Validation methods

The absolute mean bias (BIAS), the root mean square error (RMSE), 
the correlation coefficient (CORR), and the index of agreement (IOA) are 
used to validate the model performance [72], the equation can be 
described as: 

BIAS =
1

N − 1
∑n

i=1
(Mi − Oi) (7) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑N

i=1
(Mi − Oi)

2

√
√
√
√ (8) 

CORR =

∑N

i=1
(Mi − M)(Oi − O)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(Mi − M)

2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(Oi − O)

2

√ (9) 

Fig. 3. Spatial distributions of the monthly mean number concentrations of vertically integrated water-friendly aerosol (QNWFA), ice-friendly aerosol (QNIFA) and 
black carbon aerosol (QNBCA) in the Aero_Couple (Left, a,d,g), Aero_Half (Middle, b,e,h) and their difference (Right, c,f,i) simulation from 4 to 31 March 2021, 
respectively, units: #/m2.
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IOA = 1 −

∑N

i=1
(Mi − Oi)

2

∑N

i=1
(|Oi − O| + |Mi − O| )

2
(10) 

where Mi represents the simulations, Oi means the observed values, N is 
the total number of observations, M and O are the average values.

5. Results

5.1. The effects of aerosol wet scavenging on aerosol components

In the Aero_Couple and Aero_Half experiments, as the chemistry 
process is taken into consideration, the number concentrations of water- 
friendly aerosol (QNWFA), ice-friendly aerosol (QNIFA) and black car-
bon aerosol (QNBCA) are updated based on emissions and meteorolog-
ical conditions. The spatial distributions of vertically integrated monthly 
mean number concentrations of the two experiments are presented in 
Fig. 3.

Due to the influence of the new aerosol wet scavenging scheme, the 

distributions of QNWFA, QNIFA and QNBCA vary greatly between the 
two experiments. In the Aero_Couple simulation, QNWFA exhibits a 
broader high-value center in Sichuan, Hunan and adjacent regions 
(Fig. 3b), with values exceeding 4^1013/m2. In contrast, the Aero_Half 
simulation shows smaller high-value centers, with peak values around 
3^1013/m2 in Southwest China. This discrepancy indicates the updated 
wet scavenging scheme is essential to increase QNWFA in southeast 
China, especially in Central China (Fig. 3c). This demonstrates the 
simple aerosol wet scavenging scheme overestimates the aerosol wet 
deposition. For QNIFA, the high number concentration values are pre-
dominantly found in northwestern China in the two experiments. 
Notable increases in Xinjiang and Sichuan provinces can be found in the 
Aero_Couple simulation, with values exceeding 4.5^1010/m2 (Fig. 3f). As 
for QNBCA, the high values center in southeastern China simulated in 
Aero_Half is much lower than that in the Aero_Couple simulation 
(Fig. 3g), simulation both experiments exhibiting comparable spatial 
patterns.

Then the spatial distributions of vertically integrated wet scavenging 
velocity and aerosol burdens for sulfate, OC, BC, and dust are examined 
in Fig. 4. Clearly, the high values centers of wet scavenging velocities for 

Fig. 4. Spatial distributions of the monthly mean vertically integrated wet scavenging velocity (units: μg/m2/s) and aerosol burdens (units: mg/m2) for each 
component (including dust, sulfate, organic carbon [OC], and black carbon [BC]) in the Aero_Couple and Aero_Half simulations from 4 to 31 March 2021, 
respectively.
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sulfate aerosol, OC and BC are located in the Southeast coastal area, 
while the Aero_Half simulation exhibits stronger wet scavenging veloc-
ities (Fig. 4e, i, m). Meanwhile, high-value regions for dust, from Xin-
jiang to Hunan, are detected in Aero_Half in Fig. 4a. The reduced wet 
scavenging velocities in the Aero_Couple simulation result in less aerosol 
removal, leading to noticeable increases in aerosol burdens for each 
component.

For dust, a high-value center in Northwest China is simulated in both 
experiments, with high values over 2000 mg/m2 in Gansu and Xinjiang 
provinces, reflecting the two major dust events that occurred in March 
2021 (Fig. 4c, d). Additionally, the reduced wet scavenging velocities in 
the Aero_Couple experiment led to increased dust burdens from South 
Xinjiang to Guizhou. Similarly, after updating the wet scavenging 
scheme, increased sulfate aerosol, OC, and BC burdens are observed over 
southeastern China, with relative increases of 116.67 %, 37.69 % and 
36.80 %, separately. The spatial distributions of near-surface aerosol 
burdens are broadly similar, with a notable increase in sulfate concen-
trations near coastal regions in the Aero_Couple experiment, reflecting 
the influence of an updated wet scavenging scheme in highly polluted 
areas (FigS. 1). Earlier studies have revealed a similar spatial distribu-
tion of sulfate, OC, and BC in March by MERRA-2 [73], which further 
validates the improvements introduced by the updated wet scavenging 
scheme.

5.2. The effects of aerosol wet scavenging on AOD

To evaluate the performance of the new aerosol wet scavenging 
scheme in reproducing AOD over China, the monthly mean spatial dis-
tributions of AOD in the two experiments are evaluated with MODIS in 
Fig. 5.

Clearly, as can be seen from MODIS results, the monthly mean AOD 
values across China in March 2021 typically range from 0.10 to over 
1.50 (Fig. 5c), with higher values in both northwestern and coastal re-
gions. Meanwhile, simulated AOD values fall within a broader range of 
0.10 to over 2.00 (Fig. 5a-b). In regions affected by high anthropogenic 
aerosol levels, such as south of the Sichuan Basin, Northern and 
Southeast China, the results from Aero_Couple demonstrate a more ac-
curate representation of AOD (beyond 0.80), attributed to the improved 
presence of sulfate, OC, and BC (Fig. 5b). In contrast, underestimated 
AOD in Southeastern China is found in the Aero_Half experiment 

(Fig. 5a), indicating that the revised wet scavenging scheme consider-
ably increase AOD by affecting aerosol burdens. Specifically, there are 
overestimated AOD values in Northwestern China (beyond 0.30) in 
bothexperiments, likely influenced by the dust schemes used. Earlier 
studies have found a similar overestimation of dust events in March 
2021 in WRF-Chem [74,75], suggesting that tuning the ratio of the 10 m 
wind speed of FNL and the simulated 10 m wind speed could help further 
reduce the friction velocity and improve AOD results. This warrants 
further study. Compared to the Aero_Half experiment, the Aero_Couple 
experiment exhibits a widespread increase in AOD across China (Fig. 5f), 
with high-value centers in the northwestern and southeastern regions 
(exceeding 0.48). This pattern corresponds closely with the distribution 
of aerosol burdens (Fig. 4) and is partly attributed to difference in 
boundary layer height (BLH, FigS. 2). The Aero_Couple experiment 
shows lower BLH values across much of China, leading to elevated near- 
surface aerosol concentrations and higher AOD.

To further assess AOD performance across China, the results from 4 
to 31 March 2021 are further divided into seven electricity regions [76], 
including Western China, Northeastern China, Eastern China, Northern 
China, Southern China, Central China, and the Tibetan Plateau (Ti-
betan), separately. The zoning map is shown in Fig. 2b with AOD 
observation locations. The time series of the regional averaged hourly 
simulated and observed (from AERONET and SONET) AOD are revealed 
in Fig. 6.

Although the simulated AOD is generally underestimated compared 
to the observed values, the evolution and magnitude of the AOD time 
series in dust-affected regions, such as Nothern and Western China are 
reasonably reproduced by the Aero_Couple experiment during the 
simulation period. It accurately captures the heavy dust events 
happening on 14–17 March and 25–27 March in Northern China, with a 
CORR value of 0.66. Meanwhile, the event is underestimated in the 
Aero_Half experiment with a larger BIAS value below − 0.64. Compared 
to the Aero_Half experiment, the Aero_Couple experiment shows a 
relative decrease in RMSE and BIAS of 15.22 % and 20.31 %, respec-
tively, in Northern China. Similar improvements are observed in West-
ern China. In Central China, the Aero_Couple experiment significantly 
reduces BIAS from − 0.21 to − 0.02, representing a relative decrease of 
109.52 %, while the CORR value increases by 19.35 %. These results 
underscore the importance of updating aerosol removal in capturing the 
high AOD observed in March.

Fig. 5. Spatial distributions of the monthly mean AOD simulated in the (a) Aero_Half, (b) Aero_Couple, and (c) observations from MODIS and their differences 
(modeled minus observed ones, d-f) from 4 to 31 March 2021.
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Fig. 6. Time series of the observed and simulated regional averaged hourly AOD in the Aero_Half and Aero_Couple experiments in seven electricity regions from 4 to 
31 March 2021, the black dots represent the regional averaged observations.

Fig. 7. Probability density distribution of the observed (from AERONET and SONET) AOD versus the simulated AOD in (a) Aero_Half and (b) Aero_Couple ex-
periments, calculated at hourly scale from 4 to 31 March 2021. The continuous black line is the 1:1 line, and the dashed black lines correspond to the 1:2 and 2:1 
lines. N shows the number of data used.
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In Eastern China, significant improvement is detected in the Aero_-
Couple experiment, with the relative decrease of 30.00 % and 100.00 % 
for RMSE and BIAS, and an increase of 24.00 % for CORR compared with 
results from the Aero_Half experiment, respectively. In North Eastern 
China, although more data are needed to confirm the robustness of the 
results, the updated scheme reduces the excessive negative deviation by 
27.59 % for BIAS. In Southern China, both experiments demonstrate 
poor performance, likely due to the lack of consideration of wildfire 
emissions, particularly in South Asia. Biomass-burning aerosols are a 
major contributor to the global burden of fine carbonaceous aerosols 
[26]. Observations indicate significant fires occurring in this region 
during spring will affect both air quality and AOD in China [77,78]. 
Additionally, both experiments fail to capture AOD variations in the 
Tibetan region. Similar underestimations have been observed in earlier 
studies, even when considering biomass burning emissions [79,80]. This 
may be linked to the absence of human-induced aerosols and the choice 
of dust parameterization schemes in that region [30], both of which 
need further study.

Subsequently, the simulated hourly AOD throughout March 4–31, 
2021, is evaluated with all the observations in China, as depicted in 
Fig. 7. Clearly, both experiments show their strength in representing the 
time variation of AOD, with the same CORR value of 0.45. This per-
formance is impacted by poor CORR values in North Eastern China and 
Southern China in the Aero_Couple experiment. The simulated AOD in 
the Aero_Half experiment shows higher BIAS and RMSE values of − 0.60 
and 0.81 (Fig. 7a), revealing a significant underestimation. After 
updating the aerosol removal scheme, the BIAS and RMSE values 
slightly decrease to − 0.48 and 0.74, respectively, which is consistent 
with smaller BIAS and RMSE values among seven regions in the Aero_-
Couple experiment. Meanwhile, a 10 % relative improvement in IOA 
value further supports the enhanced performance of the Aero_Couple 
experiment. Overall, the performance of Aero_Couple has improved 
across all evaluation indices, with more AOD data points aligning closely 
with the 1:1 line, resulting in 20.00 % decrease in BIAS values. The most 
notable enhancements can be observed in Central and Eastern China.

5.3. The effects of aerosol wet scavenging on GHI under clear skys

To evaluate the performance of the new aerosol wet scavenging 
scheme on GHI under clear sky, the spatial distribution of the monthly 
mean GHI under clear sky in two experiments and observations from 
SSRC, along with their differences, are depicted in Fig. 8.

Although both experiments underestimate the SSRC in parts of 
northwestern China due to overestimated dust emissions, they generally 
capture the spatial distribution (Fig. 8a, b). Additionally, since GHI 
under clear sky are primarily affected by aerosols, the positive biases 
(exceeding 25 W/m2) observed in Inner Mongolia, North southern re-
gions, North China plain, the coastal regions and Qinghai (Fig. 8d) are 
corrected in the Aero_Couple experiment (Fig. 8e), especially in regions 
with higher AOD (Fig. 5b). In general, the updating induces a decrease in 
GHI under clear sky across China, especially in Southeastern China 
(Fig. 8f), thus helping to improve the model performance in most regions 
of China.

To quantitatively assess the impact of the modification, time series of 
regional averaged observed and simulated GHI under clear sky are 
presented in Fig. 9. While the CORR values show limited improvement, 
due to the lower simulated BIAS values of AOD in the Aero_Couple 
experiment, significant reductions in BIAS and RMSE are observed 
across all regions. Notably, Central and Eastern China demonstrate 
remarkable decreasing BIAS values, with relative reductions of 104.30 
% and 41.42 %, respectively, Meanwhile, although the AOD simulation 
shows weak improvement in western China, the BIAS of GHI under clear 
sky decreases by 45.70 %, likely due to the inconsistency in the number 
and location of AOD and SSRC observation sites. In Northern China, the 
new wet scavenging scheme contributes to 26.43 % and 12.73 % relative 
reductions in BIAS and RMSE values, respectively. Similar results have 
been detected in North Eastern and Southern China.

Fig. 10 further validates the model performance through probability 
density distributions. In the Aero_Couple experiment, more GHI under 
clear sky points align closely with the 1:1 line, reflecting a 36.47 % 
reduction in BIAS values compared to results in Aero_Half (Fig. 10b). 

Fig. 8. Spatial distributions of the monthly mean GHI under clear sky in the (a) Aero_Half and (b) Aero_Couple simulations and their differences (d-e) compared with 
SSRC (modeled minus observed ones), respectively, the difference between the two experiments (f) from 4 to 31 March 2021 are also be given, units: W/m2.
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Despite persistent underestimations of RMSE due to poor performance in 
Southern China and Tibetan, the updated scheme shows improved 
performance in high GHI zones (>500 W/m2) under clear sky. BIAS 
values decrease from 33.49 W/m2 to 13.45 W/m2 with a relative 
reduction of 59.84 %. In the ranges of 0–300 W/m2 and 300–500 W/m2, 
improvements are minor compared with the Aero_Half experiment. 
However, given the importance of high values of GHI under clear sky, 
these results indicate the essential role of updating aerosol wet removal 
in accurately simulating surface solar radiation. Diurnal variations of 
observed and simulated GHI under clear sky are given in Fig. 10d. 
Apparently, The Aero_Couple simulation better captures GHI under clear 
sky at 4–6 AM UTC, during which surface solar radiation is most 
abundant with the peak reaching 774.39 W/m2. The 24-h averaged AOD 
results (Fig. 10d) align with this pattern, showing a 47.44 % reduction in 
the Aero_Half simulation compared to the updated model.

5.4. The effects of aerosol wet scavenging on GHI under all sky

Fig. 11 illustrates the spatial distribution of monthly mean GHI under 
all-sky conditions from both simulations as well as their difference 
compared to the result from the SSRC product. The Aero_Half simulation 
generally overestimates GHI under all-sky across most regions of China, 
except for the southeastern coastal areas and parts of northwestern 
China (Fig. 11d). These overestimations are partially corrected in the 
Aero_Couple simulation (Fig. 11e), resulting in GHI values that align 
more closely with observations. Notably, widespread reductions of GHI 

under all-sky, particularly in southeastern China, are observed in the 
Aero_Couple experiment (Fig. 11f). The difference is consistent with the 
AOD distribution. As AOD increases in the Aero_Couple simulation, 
more scattering of GHI occurs, leading to the national decrease of the 
GHI. This phenomenon can be detected in the aerosol-direct influenced 
GHI (FigS. 3), which can partly explain the difference in Fig. 11f. 
Additionally, with the updating wet scavenging scheme, larger cloud 
optical thickness (COT) appears over China, especially in the south-
eastern regions (FigS. 4), which makes great contributions to the 
decreasing GHI under all sky.

Fig. 12 presents the time series of regional averaged GHI under all- 
sky conditions for the two experiments and observations. Consistent 
with results under clear-sky conditions, the Aero_Couple experiment 
achieves significantly lower BIAS and RMSE values across most regions 
in China. Among the seven regions, Central, Eastern, and Western China 
exhibit the most pronounced reductions in BIAS/RMSE, with relative 
decreases of 57.48 %/18.35 %, 50.62 % /7.47 %, and 32.40 %/8.34 %, 
respectively. The improvement is attributed to the noticeably larger COT 
over these regions (FigS. 4), which helps to reduce the significant pos-
itive deviation observed in the original model, especially for Central and 
Eastern China. These results highlight the effectiveness of the updated 
wet scavenging scheme in improving GHI simulations under all-sky 
conditions.

From the probability density functions plot across observations in 
China at an hourly scale in Fig. 13a-b, it is obvious that the BIAS value of 
GHI under all sky is reduced in the Aero_Couple experiment, with a 

Fig. 9. Time series of the observed (ground-based GHI observations) and simulated regional averaged hourly GHI under clear sky in the Aero_Half and Aero_Couple 
experiments in seven electricity regions from 4 to 31 March 2021, the nighttime values have been removed before calculation. The black dots represent the regional 
averaged observations, units: W/m2.
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relative reduction of 29.91 %. Additionally, the CORR value slightly 
increases from 0.81 to 0.82, driven by enhanced model performance in 
Eastern China. Overall, by perturbing the cloud optical thickness, the 
updated wet scavenging scheme will help to further reduce positive 
deviation in the model.

6. Summary and discussion

To scale back coal power and achieve net-zero carbon emissions, 
surface solar radiation stands out as a viable alternative with profound 
implications for future energy systems. The global horizontal irradiance 
(GHI) under clear-sky and all-sky conditions is a critical variable in most 
surface solar radiation prediction and simulation systems. However, the 
simulation and inversion capabilities are constrained by the substantial 
uncertainties associated with aerosol-cloud processes in models, espe-
cially under all-sky conditions.

In this study, a fully online coupled aerosol-cloud-radiation inter-
action is developed in the WRF-Solar model by interacting the TE14 
microphysics scheme with the GOCART model (referred to as WRF- 
Chem-Solar), incurring a limited increase in computational time. Then 
the effect of a new physical-based parametric wet scavenging scheme on 
GHI has been quantified and evaluated. March 2021 is selected as the 
simulation period due to its inclusion of two significant dust events in 

Northern China. Two experiments, Aero_Half and Aero_Couple, are 
conducted to assess the performance of the updated aerosol wet scav-
enging scheme on GHI and related variables at an hourly scale within the 
WRF-Chem-Solar model.

The results demonstrate that updating the wet removal process for 
aerosols reduces wet removal velocities and yields more realistic simu-
lations of aerosol component burdens, effectively capturing the evolu-
tion and magnitude of QNWFA, QNIFA, and QNBCA. In Southeastern 
China, relative reductions of wet removal rates for sulfate, organic 
carbon (OC), and black carbon (BC) are observed at 116.67 %, 37.69 %, 
and 36.80 %, respectively.

Furthermore, the spatial patterns of mean AOD over China during 
the simulation period are compared with MODIS and observations. 
High-value centers in Northwestern China, the North China Plain, the 
southern Sichuan Basin, and Southeastern China are effectively repre-
sented in the Aero_Couple experiment. Additionally, the severe dust 
events of March 14–17 and March 25–27 in Western and Northern China 
are accurately captured. Consistent improvements in AOD simulations 
are observed across most regions of China, except for Southern China 
and Tibet. Nationally, the BIAS value decreases by 20.00 %, and the IOA 
values improve by 10.00 % at an hourly scale compared to Aero_Half 
results.

The reduction in negative BIAS values for AOD leads to corrections of 

Fig. 10. Probability density distribution of the observed (ground-based GHI observations) versus the simulated GHI under clear sky in the (a) Aero_Half and (b) 
Aero_Couple experiments, calculated at hourly scale from 4 to 31 March 2021. The continuous black line is the 1:1 line, and the dashed black lines correspond to the 
1:2 and 2:1 lines. (c) Box-percentile plots of the difference of the three experiments with the hourly observations, the nighttime values have been removed before 
calculation. Shapes of the plots indicating distributions of the biases, the black dots show the mean bias values of SSRC among all the stations in the three bins, units: 
W/m2, and (d) the diurnal variations of simulated and measured 24-h mean SSRC for all stations, the variations of AOD at the same stations are also be given at 
dashed line.
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Fig. 11. Spatial distributions of the monthly mean GHI under all-sky in the (a) Aero_Half and (b) Aero_Couple simulations and their differences (d-e) compared with 
SSRC (modeled minus observed ones), respectively, the difference between the two experiments (f) from 4 to 31 March 2021 are also be given, units: W/m2.

Fig. 12. Time series of the observed and simulated regional averaged hourly GHI under all-sky in the Aero_Half and Aero_Couple experiments in seven electricity 
regions from 4 to 31 March 2021, the nighttime values have been removed before calculation. The black dots represent the regional averaged observations, units: 
W/m2.
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excessive GHI overestimations under clear-sky conditions in the Aero_-
Half experiment. Simulation results for Inner Mongolia, the North China 
Plain, southern regions, the coastal areas, and Qinghai are significantly 
closer to reality. Notably, BIAS values decrease across all regions in 
China except for Southern China and Tibet, with a national relative 
improvement of 36.47 %. High GHI zones (GHI > 500 W/m2) under 
clear sky show notable enhancements, with mean BIAS reduced by 
59.84 %. The most pronounced improvements in BIAS are observed in 
Central, Western, and Eastern China, with relative improvements of 
104.30 %, 45.70 %, and 41.42 %, respectively. Similar improvement is 
evaluated for GHI under all-sky, with a national relative improvement of 
29.91 %. Central, Eastern, and Western China exhibit the most signifi-
cant BIAS reductions, with relative decreases of 57.48 %, 50.62 %, and 
32.40 %, respectively. These results underscore the essential role of 
updating aerosol wet scavenging schemes in the WRF-Chem-Solar 
model.

This work mainly focused on the development of aerosol wet scav-
enging schemes in the WRF-Chem-Solar model and its performance on 
GHI simulation. Future work should include an evaluation with the 
original version of WRF-Chem, and more cases are needed to further 
verify the applied effect of this scheme on more variables and other 
seasons. A series of tuning works is needed to reduce the uncertainty of 
AOD in Northwestern China. Furthermore, since the experiments lack 
consideration of wildfire emissions, integrating them to intelligently 
extract the characteristics of wildfire-related events in South Asia will be 
crucial.
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