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Abstract
Aerosols of anthropogenic origin exhibit significant spatial variability, leading to localized environmental pollution and 
climate effects. The increasing international trade has caused extensive cross-border transfer of pollution, rendering the tra-
ditional production-based perspective insufficient for assessing the climate impacts of human activities in specific regions. 
In this paper, using the Earth System Model, five numerical simulation experiments are designed to simulate the impacts 
of anthropogenic sources of sulfate, associated with both production and consumption activities, on the climate of East and 
South Asia in different affluent regions. The results show that sulfate associated with consumption activities in developed 
countries has a greater impact on climate than production activities, whereas the opposite is observed for developing coun-
tries. This is because products produced in developing countries are largely consumed by developed countries.
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1 Introduction

Sulfate aerosol is one of the main types of secondary inor-
ganic aerosols generated by human activities, and its precur-
sor sulfur dioxide  (SO2) is mainly generated by the combus-
tion of industrial energy sources such as coal and petroleum, 
so sulfate emissions are large in quantity and closely linked 
to human activities. As an unavoidable concomitant product 
of fossil energy combustion, anthropogenic aerosols, such 
as sulfate, are becoming a hot issue considering its impact 
on the climate and health (Li et al. 2022; Hong et al. 2020; 
Bai et al. 2018). Whether it is a concomitant reduction under 
greenhouse gas mitigation or due to pollution control, the 
concentration of anthropogenic aerosols will be reduced in 
the future, and their cooling effect will be weakened, which 

will have a direct impact on the ability to achieve the tem-
perature rise target after greenhouse gas mitigation (Persad 
et al. 2022; Acosta Navarro et al. 2017; Wang et al. 2023; 
Yang et al. 2023).

Compared with long-lived greenhouse gases, aerosol par-
ticulate matter generally has a shorter lifetime of nearly one 
week, so its distribution is extremely uneven in space. The 
rapid development of industry in Europe after the 1850s 
was accompanied by large increasing of pollutant emis-
sions. With the adjustment of the economic and industrial 
development of each country, the global  SO2 quantity and 
spatial distribution also produce huge differences, Europe 
and North America to reduce the emissions of more than 
two thirds of the emissions, the Asian region emissions have 
risen sharply (Zhou et al. 2020). China used to be the largest 
emitter of  SO2, accounting for about one-third of the world's 
 SO2, while after strict environmental controls, it’s emissions 
has declined by 75% since 2007, while India's emissions 
have increased by 50% (Lu et al. 2011). As a result of these 
changes, India has now overtaken China as the world's larg-
est emitter of  SO2 from anthropogenic sources.

As the growing demand for pollution abatement within 
administrative boundaries continues, emissions shifting 
has also become a critical issue in climate change negotia-
tions on climate equity. The booming trade economy has 
led to differences in the quantity and spatial distribution of 
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both consumption-related and production-related pollut-
ants in the same country/region (Zhao et al. 2015; Wied-
mann and Lenzen 2018). If a region simply reduces its 
production emissions without changing its consumption 
habits, the corresponding pollutants are borne by other 
countries (Wang et al. 2017). It is therefore necessary to 
supplement consumption-based emission inventories with 
traditional production-based emission inventories (Moran 
et al. 2013).

Sulfate aerosols have long been recognized as play-
ing an important role in global climate change. Previous 
scholars proposed that the anthropogenic sulfate-induced 
radiative forcing (of about − 1 to − 2 W/m2) is comparable 
to anthropogenic greenhouse gases in intensity, but is not 
a simple compensation for geographic and seasonal distri-
bution (Charlson et al. 1992; Volkamer et al. 2006).IPCC 
AR6 also shows that anthropogenic sources of aerosols 
have offset about 1 °C of GHG-induced warming since 
the Industrial Revolution (IPCC: Climate Change 2021). 
China and India, as large emitters of aerosol pollutants, 
are also located in the active atmospheric circulation mon-
soon zone of the Northern Hemisphere, so the impact of 
aerosols on precipitation in East and South Asia has been 
a key concern of researchers (Chen et al. 2016; Cowan and 
Cai 2011; Ganguly et al. 2012). In general, on a continen-
tal scale, aerosols can inhibit monsoon development by 
reducing the radiation reaching the surface and weakening 
the thermal difference between land and ocean; locally, 
the radiative effect of aerosols alters the thermodynamic 
stability and convective potential of the lower atmosphere, 
leading to lower temperatures, increased atmospheric sta-
bility, and weakened winds and atmospheric circulation; 
and the atmospheric thermodynamic state of cloud for-
mation, convection, and precipitation may be affected by 
aerosols that act as cloud condensation nuclei or ice nuclei 
(Li et al. 2018, 2016). Yang et al. (2022) assessed the 
impact of a large reduction in  CO2 and aerosol particulate 
matter emissions in China during 2020 on extreme summer 
precipitation in that year. The simulation results show that 
the impact of aerosol reduction on precipitation is greater 
than that of greenhouse gas reduction.

These findings highlight the important role of anthro-
pogenic aerosols on the Asian climate in the context of 
climate change. In this paper, we will compare the impacts 
of anthropogenic aerosols of different regional relevance 
on the climate of East and South Asia from both the pro-
duction and consumption perspectives. Such a comparison 
will allow for a more comprehensive and correct under-
standing of the historical impacts of anthropogenic activi-
ties on the global climate, and provide a reference basis for 
the prediction of the actual effect of carbon neutrality on 
the regional climate impacts and the response to climate 
change.

2  Methods

The new version of the Earth System Model Community, 
CESM2 is a coupled model developed by the National 
Center for Atmospheric Research (NCAR) to simulate 
the Earth's climate system (Danabasoglu et al. 2020). The 
CESM model can be configured in a number of different 
ways from both a scientific and technical perspective. Users 
can configure specific model physical properties and param-
eter settings to change the state and resolution of individual 
submodels to combine various circles to meet their experi-
mental needs, which is highly flexible. Many experiments 
have been conducted to evaluate the excellent simulation 
capability of CESM2 in the atmosphere, ocean and snow 
circle (Lin et al. 2019; Gettelman et al. 2019).

We conducted a coupled sea-air simulation using CESM2, 
where the atmospheric module is CAM6, which by default 
uses the Modal Aerosol Module 4 (MAM4) (Liu et al. 2016) 
for processing. The standard version of CAM6 has a hori-
zontal resolution of 1.25°longitude and 0.9°latitude, is verti-
cally divided into 32 layers, and has a mode top of 2.26 hPa 
(~ 40 km). By varying the emission inventory of the sulfate 
aerosol precursor  SO2, the response of the Asian climate to 
sulfate is comparatively analyzed. The experimental setup 
is as follows:

CTL Global anthropogenic emissions 
by sources of the sulfate precur-
sor  SO2 fixed in 2014

EC1 Removal of anthropogenic  SO2 
emissions by sources from 
consumption in 2014 in regions 
with high economic develop-
ment, dominated by Europe and 
the United States

EC2 Removal of anthropogenic  SO2 
emissions by sources from 
consumption in 2014 in regions 
with weak economic develop-
ment, dominated by China and 
India

EP1 Removal of anthropogenic  SO2 
emissions by sources from pro-
duction in 2014 in regions with 
high economic development, 
mainly in Europe and the United 
States of America

EP2 Removal of anthropogenic emis-
sions by sources of  SO2 from 
production in 2014 in regions 
with weak economic develop-
ment, mainly in China and India

SO2 emissions for 2014 were obtained by combining the 
production-based CEDS CMIP6 inventory (Hoesly et al. 
2018) with the widely used Global Trade Analysis Project 
(GTAP) input–output table (Multi-Region Input–Output 
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table, MRIO) (Aguiar et al. 2019). The consumption-based 
 SO2 emission inventory calculation follows previous stud-
ies (Lin et al. 2022). Firstly,  SO2 production emission data 
for the year 2014 on a global scale were obtained from 
the CEDS CMIP6 emission inventory, which specifies the 
monthly emissions for 55 sectors on a 0.5ºx0.5º horizontal 
grid. Subsequently, the production and consumption (both 
calculated in monetary terms) for 141 countries/regions and 
57 sectors were calculated based on the 2014 GTAP v10 ver-
sion MRIO table. The production of each country/region and 
sector must supply the direct and indirect consumption of all 
regions and sectors. GTAP provides quantitative informa-
tion on the connections between sectors and regions along 
the global supply chain. The correspondence from the 55 
sectors in CEDS to the 57 sectors in GTAP was conducted 
according to Lin et al. (2022). Then, the  SO2 emission inten-
sity for countries and sectors (emissions divided by mon-
etary economic output) was calculated based on the  SO2 
production emission inventory and production data. Further, 
the  SO2 emission data associated with the consumption of 
individual countries/regions and sectors were calculated by 
multiplying the sectoral emission intensities with the con-
sumption-related sectoral output. In each country, the spatial 
and monthly distribution of consumption-related emission 
data corresponds to the distribution of emission data related 
to the corresponding production activities.

Before running these five experiments, we perform an 
additional 300-year pre-simulation Pre_run from the initial 
2000 climate state defaulted by the CESM2 fully-coupled 
present-day simulation (SST, sea ice, and all anthropogenic 
pollutant emission inventories including  SO2 are fixed to 
the year 2000). The CTL case then starts with the climate 
state in the 300th year of the Pre_run and continues for an 
additional 405 years. Ec1, Ec2, Ep1, and Ep2 each branch 
off from the CTL in the year 201 for simulation, using the 
processed sulfur dioxide emission inventory files under dif-
ferent production and consumption scenarios to drive the 
model. The model runs for 100 years, and data from the 
last 80 years are used for analysis. Subtract the results of 
Ec1, Ec2, Ep1, and Ep2 from the CTL results to obtain the 
concentration differences of sulfate aerosols under different 
scenarios and their impact on local climate (Figs. 1–8).

3  Results

3.1  Distribution of Sulfate Aerosol Concentration 
from Anthropogenic Sources Related 
to Consumption and Production

The spatial distribution of sulfate concentration and its 
contribution to the optical thickness change (AOD) in 
the 550 nm, caused by less developed countries and rich 

countries respectively under the production and consump-
tion perspectives in East Asia and South Asia in 2014, are 
shown in Figs. 1 and 2.

Under the traditional production perspective, the devel-
oping countries, primarily China and India, emit a consid-
erable amount of sulfate aerosols locally (regional average 
of 117.00 μg/m2 and maximum value of 458.96 μg/m2). In 
contrast, the production activities of the developed countries 
produce less pollutants in these regions (regional average of 
12.09 μg/m2 and maximum value of 57.97 μg/m2). Under the 
consumption perspective, the developing countries caused a 
decrease in pollutant emissions (regional average 92.59 μg/
m2, maximum 393.68 μg/m2), especially in East Asia, where 
consumption-related (regional average 82.97 μg/m2) sulfate 
concentrations produced a significant decrease compared to 
production-related (regional average 109.23 μg/m2). Devel-
oped countries, on the other hand, induced an increase in 
pollutant concentrations in East and South Asia (regional 
average 35.21 μg/m2, maximum value 130.55 μg/m2). In 
terms of average values, the concentration of sulphate aero-
sols induced by developing countries in East and South Asia 
was 9.8 times higher than that induced by richer countries 
in terms of production, and the gap narrowed to 2.6 times in 
terms of consumption.

Although influenced by other aerosols, such as sand and 
dust, the changes in AOD in Fig. 2 similarly support the 
distribution of sulfate concentrations associated with rich 
versus less developed countries from both perspectives: the 
changes in AOD due to consumption-related sulfate in devel-
oping countries are smaller than the effects of production 
activities (both in terms of mean values and spatial distribu-
tion), and are most pronounced in the regions of China and 
India. The impact of consumption scenarios in rich countries 
on AOD in East and South Asia is much larger than that of 
production scenarios, with a difference of about 2.7 times 
the regional mean.

3.2  Impacts of Consumption 
and Production‑Related Anthropogenic Sources 
of Sulfate Aerosols on the Asian Monsoon

The final temperature response exhibits a high degree of 
nonlinearity due to the complex interactions between the 
atmospheric and oceanic systems (Westervelt et al. 2020). 
Figure 3 shows the impact of sulfate associated with pro-
duction and consumption activities in developing and rich 
countries on the temperature in East and South Asia in 
2014. The cooling effect due to production-related sulfates 
in developing countries (cooling maximum of − 0.93 K) 
is stronger than the effect of their consumption-related 
sulfates, with regional average cooling of − 0.38  K 
vs − 0.30 K. The cooling effect due to production-related 



 Aerosol Science and Engineering

sulfates in rich countries is slightly weaker than the 
cooling effect due to their consumption-related sulfates 
(− 0.15 K vs − 0.21 K).

Despite the influence cloud uncertainty, the radiative 
response and temperature changes are both consistent with 
the perturbation of sulfate concentration. Figure 4a and c 
show that sulfate emitted by developing countries under both 
scenarios creates a distinct band of radiative reduction in 
East and South Asia, with the most pronounced reductions 
occurring in East Asia. In terms of quantities, the regional 
average radiative forcing reduction is 1.42 W/m2 under the 
production scenario and 1.01 W/m2 under the consumption 
scenario. Under the production scenario, sulfate associated 
with production in the rich countries does not form a large 
radiatively reduced zone in East and South Asia, only shows 
radiative reductions in southeastern China and India. How-
ever, in the consumption scenario, sulphate associated with 
rich countries also forms a stable radiatively reduced zone 
in the region.

Precipitation changes are a comprehensive manifesta-
tion influenced by multiple factors such as surface evapora-
tion, atmospheric circulation, humidity, and clouds, among 
which the change in surface temperature affecting surface 
evaporation is an important link. Therefore, to a certain 
extent, the results of aerosol concentration, temperature 
changes, and precipitation changes are consistent, but the 
feedback of precipitation on changes in aerosol concen-
tration is highly nonlinear (Stier et al. 2024; Lau and Kim 
2006). Generally speaking, there is a negative correlation 
between aerosol concentration and precipitation. Aerosols 
affect radiation, causing atmospheric cooling and reduc-
ing the energy available for the development of convection, 
leading to weakened upward motion. At the same time, an 
increase in aerosol concentration may reduce the effective 
radius of cloud droplets, causing precipitation to be delayed 
or suppressed. Figure 5 shows the precipitation response in 
East Asia and South Asia caused by sulfate aerosols in less 
developed and wealthy countries under two scenarios. In the 

Fig. 1  Distribution of production-related(top) and consumption-related(bottom) sulfate concentrations in developing countries (left) versus 
developed countries (right). The grid cells with cross lines pass the paired z test at 95% CI. Unit: μg/m2
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production scenario, the reduction in regional precipitation 
caused by sulfates associated with less developed countries 
(-0.19 mm/day) is significantly greater than the impact of 
wealthy countries (0.009 mm/day), with the latter hardly 
causing any reduction in Asian monsoon precipitation. In 

the consumption scenario, the impact of pollutants associ-
ated with less developed countries on precipitation decreases 
(-0.13 mm/day), while the impact of wealthy countries on 

Fig. 2  Distribution of produc-
tion-related(top) and consump-
tion-related(bottom) AOD in 
developing countries (left) 
versus developed countries 
(right). AOD includes the effect 
of all aerosol compositions. The 
grid cells with cross lines pass 
the paired z test at 95% CI

Fig. 3  Global temperature 
impact of SO2 associated 
with production(top) and 
consumption(bottom) activi-
ties in developing (left) and 
developed (right) countries. The 
grid cells with cross lines pass 
the paired z test at 95% CI, and 
those with diagonal lines pass 
the test at 68% CI. Unit: K
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precipitation increases (− 0.03 mm/day). It is worth noting that in all scenarios, there is an increase in precipitation over 
the ocean to varying degrees, which is related to the adjust-
ment of tropical circulation.

Fig. 4  Changes in production-
related (a,b) and consumption-
related(c,d) top-of-atmosphere 
radiative fluxes due to sulfate in 
developing (left) and developed 
countries (right). The grid cells 
with cross lines pass the paired 
z test at 95% CI, and those with 
diagonal lines pass the test at 
68% CI. Unit: W/m2

Fig. 5  Global precipitation 
impact of SO2 associated 
with production(top) and 
consumption(bottom) activi-
ties in developing (left) and 
developed (right) countries. The 
grid cells with cross lines pass 
the paired z test at 95% CI, and 
those with diagonal lines pass 
the test at 68% CI. Unit: mm/
day
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3.3  Impact of Anthropogenic Sulfate Aerosols 
on Atmospheric Circulation

The advection and vertical motion of the atmosphere are 
determined by circulation, which is driven by solar radia-
tion. Changes in sulfate aerosol concentration can affect 
the Earth’s surface radiation balance. After the heat source 
changes, the intensity of high and low-pressure systems on 
the ground will adjust accordingly, affecting the pressure 
gradient force between the ocean and land, which in turn 
affects wind direction and speed. The increase in sulfate 
aerosol concentration in East Asia and South Asia leads to 
a reduction in solar radiation reaching the ground, while 
the radiative cooling effect of anthropogenic sulfate aero-
sols in the Southern Hemisphere is weaker, leading to an 
energy imbalance between the Northern and Southern Hemi-
spheres. In the tropics, the upward branch of the Northern 
Hemisphere Hadley circulation weakens, while the Southern 
Hemisphere Hadley circulation strengthens. Correspond-
ingly, the Intertropical Convergence Zone (ITCZ) shifts 

towards the Southern Hemisphere, increasing oceanic pre-
cipitation and presenting the phenomenon of “warmer places 
being wetter.” (Xie et al. 2013; Hwang et al. 2013).

Figure 6 illustrates the changes in atmospheric vertical 
motion following perturbations in sulfate aerosol concen-
tration. As shown, the subsidence motion in the region 
of 0 ~ 30°N is significantly enhanced, corresponding to 
an increase in surface pressure and a strengthening of the 
anticyclonic circulation in the lower troposphere (Fig. 7). 
Concurrently, the surface moisture flux along the coasts 
of East Asia and South Asia weakens, leading to reduced 
precipitation. The decrease in precipitation results in a 
reduction of condensation latent heat (Fig. 8), cooling the 
air above the continents and similarly reducing the land-
sea thermal contrast, which in turn weakens the East Asian 
summer monsoon, forming a positive feedback loop. This 
feedback mechanism is most pronounced in scenarios of 
production in less developed countries, where the enhance-
ment of subsidence motion in the 0 ~ 20°N range is very 
evident and the most extensive (Fig. 6a). Additionally, the 

Fig. 6  Meridional circula-
tion response to production-
based(top) and consumption-
based(bottom) emissions. Zonal 
average changes in vertical 
velocity (ω = dp⁄dt) due to 
developing (left) and developed 
(right) countries. Negative 
values represent rising air. 
Unit:10-3 Pa/s
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Hadley circulation in the Southern Hemisphere is strength-
ened, with a very noticeable cross-equatorial wind from the 
Northern Hemisphere at 850 hPa in the Pacific region south 
of the equator. The impact from the consumption perspective 
of less developed countries is secondary. The influence of 
sulfate related to production and consumption in developed 
countries on vertical motion and surface sensible and latent 
heat in the equatorial region is relatively weaker and does 
not lead to such a strong reduction in precipitation in the 
Asian monsoon region.

4  Discussion

Climate action and responsible consumption and production 
are two closely linked United Nations Sustainable Devel-
opment Goals. The development of international trade 
means that consumption in one region can be supplied by 

production from other parts of the world, thus constituting 
a second way of transboundary pollution transport beyond 
atmospheric transport. However, previous studies on the cli-
mate effects of aerosols have all been conducted from the 
perspective of production emissions, and there is currently 
no work that assesses the impact of pollutant emissions 
from human activities on the climate from the perspective 
of consumption. Analyzing the pollutant emissions related 
to different regions and their impact on the climate from a 
consumption perspective can provide new information and 
different insights to support policy formulation and inter-
national cooperation in mitigating climate change actions 
(United Nations 2019; Zhang et al. 2017; Waldhoff and Faw-
cett 2011).

Using the state of consumption and production activi-
ties of individual countries in 2014 as the context of today's 
international trade environment, we selected representa-
tives of two groups of countries according to their economic 

Fig. 7  Changes in surface water flux (the color-coded graph, Unit: 
g/m2) and 850  hPa wind field after perturbation of production-
related(top) and consumption-related(bottom) sulfate concentration in 

developing countries (left) and developed countries (right). The arrow 
shows the change in wind field. Unit: m/s
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affluence, and quantified the impact of anthropogenic 
sources of sulfate aerosols associated with production and 
consumption activities on the East and South Asian climate 
for the two groups of countries, using the latest generation 
of the fully coupled earth system model (CESM2).

The affluent countries have substantial sulfate emission 
reductions from a production perspective, resulting in mini-
mal changes in pollutant concentrations, temperature, and 
precipitation in East and South Asia through atmospheric 
transport. Sulfate concentrations associated with their con-
sumption activities are significantly higher in these two 
regions, exerting a greater impact on temperature and pre-
cipitation. In contrast, the developing countries, particularly 
China and India, generate large amounts of sulfate aerosols 
locally as a result of their extensive production activities, 
causing a decrease in local temperature and precipitation. 
However, from a consumption point of view, the local pollut-
ant concentrations and their impact on climate are reduced 
to different degrees. At the same time, the simulation results 
show a highly nonlinear response of the climate system to 
the spatial pattern of aerosol forcing.

International trade is now unprecedented in scale and 
complexity, and in recent years the global supply chain has 
shifted to developing countries (Lenzen et al. 2012; Liang 
et al. 2017). Improvements in environmental and working 
conditions in developed countries are often achieved through 
transfers to other countries, resulting in stronger impacts 
from consumption activities compared with their produc-
tion activities. In developing countries, although sulphate 
concentrations and impacts associated with consumption 

activities have declined to some extent compared with pro-
duction activities, they remain substantial. The effective-
ness of the response to climate change depends not only on 
the control of pollutant generation by production emission 
sources, but also on the reduction of pollution-related con-
sumption of final goods and services, which requires the 
efforts of all.
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