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ABSTRACT

Climate models are vital for understanding and projecting global climate change and its associated impacts. However,
these  models  suffer  from  biases  that  limit  their  accuracy  in  historical  simulations  and  the  trustworthiness  of  future
projections.  Addressing  these  challenges  requires  addressing  internal  variability,  hindering  the  direct  alignment  between
model  simulations  and  observations,  and  thwarting  conventional  supervised  learning  methods.  Here,  we  employ  an
unsupervised  Cycle-consistent  Generative  Adversarial  Network  (CycleGAN),  to  correct  daily  Sea  Surface  Temperature
(SST) simulations from the Community Earth System Model 2 (CESM2). Our results reveal that the CycleGAN not only
corrects  climatological  biases  but  also improves the simulation of  major  dynamic modes including the El  Niño-Southern
Oscillation  (ENSO)  and  the  Indian  Ocean  Dipole  mode,  as  well  as  SST  extremes.  Notably,  it  substantially  corrects
climatological  SST biases,  decreasing  the  globally  averaged  Root-Mean-Square  Error  (RMSE)  by  58%.  Intriguingly,  the
CycleGAN  effectively  addresses  the  well-known  excessive  westward  bias  in  ENSO  SST  anomalies,  a  common  issue  in
climate models that traditional methods, like quantile mapping, struggle to rectify. Additionally, it  substantially improves
the simulation of SST extremes, raising the pattern correlation coefficient (PCC) from 0.56 to 0.88 and lowering the RMSE
from 0.5 to 0.32. This enhancement is attributed to better representations of interannual, intraseasonal, and synoptic scales
variabilities. Our study offers a novel approach to correct global SST simulations and underscores its effectiveness across
different time scales and primary dynamical modes.
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Article Highlights:

•   An  unsupervised  Cycle-consistent  Generative  Adversarial  Network  (CycleGAN)  corrects  climatological  biases  and
improves the simulation of primary dynamic modes including the El Niño-Southern Oscillation (ENSO) and Indian Ocean
Dipole mode, as well as Sea Surface Temperature (SST) extremes.
•  CycleGAN addresses the excessive westward bias of equatorial Pacific ENSO SST anomalies common to climate models.
•   Improved  representations  of  interannual,  intraseasonal,  and  synoptic  scale  variabilities  help  to  enhance  extreme  SST
simulations.

 

 
 

 

  
※ This paper is a contribution to the special issue on AI Applications in Atmospheric and Oceanic Science: Pioneering the Future.
* Corresponding author: Gang HUANG

Email: hg@mail.iap.ac.cn 

 

ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 41, JULY 2024, 1299–1312
 
• Original Paper •

 

© Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press 2024
  

https://doi.org/10.1007/s00376-024-3288-6
https://doi.org/10.1007/s00376-024-3288-6
https://doi.org/10.1007/s00376-024-3288-6
https://doi.org/10.1007/s00376-024-3288-6
https://doi.org/10.1007/s00376-024-3288-6
https://doi.org/10.1007/s00376-024-3288-6
https://doi.org/10.1007/s00376-024-3288-6


 

1.    Introduction

Climate  model  simulations  play  an  indispensable  role
in  contemporary  climate  science,  serving  as  fundamental
resources for climate change detection, attribution, and projec-
tion. Their simulations, especially from the Coupled Model
Intercomparison  Project  (CMIP),  underpin  the  assessments
conducted  by  the  Intergovernmental  Panel  on  Climate
Change (IPCC), offering comprehensive evaluations and piv-
otal references that support the advancement of global climate
science  and  guide  critical  decision-making  (Taylor  et al.,
2012; Eyring et al., 2016). However, the utility of CMIP mod-
els  in  both  detection  and  attribution  of  climate  change,  as
well as climate projections, is significantly impeded by vari-
ous persistent model biases (Li and Xie, 2012, 2014; Zheng
et al.,  2012; Liu  et al.,  2014; Tao  et al.,  2018; Jiang  et al.,
2019, 2021; Capotondi  et al.,  2020; Danabasoglu  et al.,
2020).

Among  these  biases,  a  prominent  concern  centers  on
the representation of sea surface temperatures (SSTs) in cou-
pled general circulation models (CGCMs), especially the per-
sistent  cold  tongue  bias  found  in  the  equatorial  Pacific  (Li
and Xie, 2012, 2014; Zheng et al., 2012). This phenomenon,
characterized by a cold bias in the climatological SSTs, has
long  perplexed  the  climate  community  due  to  its  potential
repercussions  on  climatological  precipitation  patterns  and
the accurate simulation of the El Niño-Southern Oscillation
(ENSO), thereby affecting the fidelity of global climate simu-
lations  (Tao  et al.,  2018; Jiang  et al.,  2019; Tang  et al.,
2023).  Additionally,  substantial  biases manifest  themselves
at interannual scales, with ENSO SST variability exhibiting
an excessive westward extension into the equatorial western
Pacific, consequently impacting ENSO decay processes and
regional  climate  variability.  These  biases,  commonly
present  in  most  of  the  CMIP  models,  are  hardly  canceled
out,  even  by  multi-model  means  (Huang  and  Ying,  2015;
Jiang et al., 2021; Tang et al., 2023), thus impacting historical
simulations and future projections.

Efforts  to  rectify  these  climate  model  biases  have
spawned the development of various methodologies. Tradi-
tional methods predominantly center around the local adjust-
ment of specific statistical characteristics. These adjustments
typically target parameters like the mean and variance (involv-
ing  variance  adjustment; Chen  et al.,  2011, 2013;
Teutschbein and Seibert, 2012; Li et al., 2019), and frequency
distributions  (via  techniques  like  quantile  mapping;  QM;
Jakob  Themeβl  et al.,  2011).  However,  these  approaches
fall  short  of  providing  precise  corrections  for  model  errors
at the daily timescale and in dynamical climate variabilities.
Traditional methods primarily focus on specific statistical fea-
tures or target adjustments at individual grid points and can
by  design  not  correct  spatial  patterns  (Hess  et al.,  2022,
2023).

The challenge of climate model bias correction is exacer-
bated by the internal variability of the Earth system, character-
ized  by  inherent  nonlinearity  (Hawkins  and  Sutton,  2011;
Deser et al., 2012, 2016; Hu et al., 2019; Wang et al., 2020).

In  particular,  discrepancies  arise  due  to  internal  variability
in  model  simulations  and  observations  at  corresponding
times.  Consequently,  discerning  whether  disparities
between model fields and observational datasets arise from
internal variability or genuine model biases poses a substan-
tial  challenge; identifying and, on that  basis,  correcting the
bias for a particular day in model data is inherently difficult.
This presents a challenge when trying to employ traditional
statistical methods and supervised learning techniques to cor-
rect model simulations.

The  advent  of  deep  learning,  particularly  the  develop-
ment  of  unsupervised  and  semi-supervised  learning  tech-
niques, has introduced novel avenues for addressing climate
model biases. Generative Adversarial Networks (GANs), pio-
neered by Goodfellow et al. (2014), leverage a generator-dis-
criminator framework to generate images that are in their char-
acteristics and statistical properties virtually indistinguishable
from target images. Subsequently, Hoffman et al. (2017), Yi
et al. (2017), and Zhu et al. (2017) expanded upon the GAN
methodology, introducing the Cycle-consistent GAN (Cycle-
GAN), which incorporates a cycle-consistent loss to facilitate
the  bidirectional  transformation  of  data  styles. Pan  et al.
(2021) have explored the application of this method to rectify
precipitation data in CGCM simulations, yielding promising
results  in  correcting  precipitation  biases  in  the  United
States. Moreover, the extension of this method to global pre-
cipitation simulations demonstrated its efficacy in correcting
spatial  patterns  and  in  ameliorating  the  Pacific  double
Intertropical  Convergence  Zone  (ITCZ)  bias  (Hess  et al.,
2022, 2023),  a  prevalent  issue across  most  CGCMs. These
applications have predominantly concentrated on evaluating
the enhancement of fundamental statistical aspects of precipi-
tation.

The  critical  inquiry  here  is  whether  this  method  can
also address bias-correct modeled SST fields. Furthermore,
it  is  unclear  whether  it  can  correct  the  dynamical  oceanic
modes  and  adapt  to  variations  driven  by  distinct  physical
mechanisms at  various timescales.  These unclarified issues
presently lack a definitive resolution.

In this paper, we employ a CycleGAN-based approach
to correct global daily SST fields to address these concerns.
We find that our method not only addresses biases at climato-
logical  averages  but  also  tackles  errors  associated  with
ENSO, the Indian Ocean Dipole (IOD), and SST extremes.
The remainder of this paper is structured as follows. Section
2  provides  introductions  of  the  datasets  and  methodology
employed, section 3 unveils the primary results, and section
4 discusses and summarizes our findings. 

2.    Data and methods
 

2.1.    Data

We  employ  daily  surface  temperature  (ST)  data  from
the  National  Center  for  Environmental  Prediction-Depart-
ment of Energy Atmospheric Reanalysis (NCEP; Kanamitsu
et al.,  2002)  at  a  resolution  of  2.5°  ×  2.5°  for  the  period
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1950–2014.  Modeled  daily  ST  fields  from  1950–2014  are
obtained  from  the  Community  Earth  System  Model  2
(CESM2; Danabasoglu et al., 2020), a widely used and well-
organized model, which can be considered a state-of-the-art
climate  model.  The  global  gridded  monthly  SST  datasets
from  Extended  Reconstructed  Sea  Surface  Temperature
(ERSST.v5; Huang et al. 2017), the NOAA 1/4° Daily Opti-
mum  Interpolation  SST  (OISST; Huang  et al.,  2021),  and
the Hadley Centre Global Sea Ice and SST (HadISST) are uti-
lized. These three SST datasets and NCEP ST, ranging from
1991−2014,  are  utilized  for  model  testing.  All  datasets  are
interpolated to a resolution of 2.5° × 2.5°.

To extract ENSO-related SST variability, we utilize the
unstandardized Niño-3.4 index. This index is defined as the
SST  anomalies  (SSTA)  averaged  over  the  region  between
5°S–5°N,  and  120°–170°W  from  December  to  February
(DJF). We performed a regression analysis of this unstandard-
ized Niño-3.4 index on the interannual SSTAs, thus revealing
the underlying ENSO-driven SST variability. The IOD SST
is  obtained  in  a  similar  way  to  that  of  the  ENSO SST  but
uses the Dipole Mode Index, defined as the anomalous SST
gradient  between  the  western  equatorial  Indian  Ocean
(50°–70°E and 10°S–10°N) and the southeastern equatorial
Indian Ocean (90°–110°E and 10°S–0°) during September–
October–November (SON). 

2.2.    Methods

CycleGAN  is  a  groundbreaking  deep-learning  model
designed for unpaired image-to-image translation. It enables
the  transformation  of  images  from  one  domain  to  another
even  when  paired  training  data  is  unavailable  (Zhu  et al.,
2017),  such  as  in  the  case  addressed  in  the  present  study.
Unpaired  image-to-image  translation  involves  the  mapping
of images from one domain (the source domain, denoted by
X)  to  another  (the  target  domain,  denoted  by  Y)  without
requiring  a  direct  one-to-one  correspondence  between  the
images in the two domains. In our case, we apply the princi-
ples of unpaired image-to-image translation for the correction
of  CGCM  daily  SST  data.  Specifically,  we  consider  the
CESM2  SSTs  as  domain  X  and  NCEP  STs  as  domain  Y.
The training and validation data comprises the CESM2 and
NCEP  ST  data  from  1950  to  1990,  while  the  testing  data
spans  from  1991  to  2014.  A  normalization  process  is
employed to scale the data.

Figure 1 gives the schematic of the CycleGAN. Within
the CESM2, biases exist in the internal variability and exter-
nally  forced  responses  within  model  simulations  on  any
given day. However, the internal variability in observations
on  the  same  day  may  not  correspond  to  that  in  the  model.
For  example,  the  model  might  simulate  an  El  Niño  year,
while  observations  indicate  a  La  Niña  year.  Therefore,
directly adjusting the model to match the observational state
would  be  profoundly  inaccurate.  Our  goal  is  to  eliminate
biases  in  the  internal  variability  and  externally  forced
responses while simultaneously preserving the model's inter-
nal variability (e.g., the ENSO phase).

To achieve this objective, a generator [G(x)] and a dis-

criminator are first employed in this model (Fig. 1a). The pri-
mary  function  of  the  generator  is  to  transform the  CESM2
data to match the observational SST, while the discriminator
assesses whether the generated outcomes originate from obser-
vations.  A  balance  between  these  two  components  yields
the best results, wherein the discriminator should be incapable
of distinguishing between images generated by the generator
and observations. This phase aids in correcting the GCM sim-
ulations. Subsequently, a secondary generator [F(y)] and a dis-
criminator are utilized to retain the internal variability. The
secondary generator, F(y), is tasked with reconverting the pre-
viously  generated  images  back  into  the  original  CESM2
data.  This  process  ensures  that  the  generated  images  by
G(x)  retain  the essential  characteristics  of  CESM2. From a
mathematical perspective, the architecture of F(y) ensures a
bidirectional mapping between CESM2 and the observational
data. In a certain context, this secondary generator facilitates
the preservation of internal variability within CESM2, as inter-
nal variability is a predominant aspect of a daily timescale.

The loss function of this model is as follows: 

L (G,F,DX ,DY ) =LGAN (G,DY ,X,Y)+
LGAN (F,DX ,Y,X)+λcLcyc (G,F)

+λiLid (G,F) . (1)

LGAN (G,DY ,X,Y) LGAN (F,DX ,

Y,X) Lcyc (G,F)
Lid (G,F)

DY DX

The  loss  includes  the  adversarial  loss  of X→Y
[ ,  see  Eq.  (2)], Y→ X [

,  see  Eq.  (3)],  the  consistency  loss  [ ],  and
the identity loss [ ]. G denotes a generator that tries
to  generate  images G(x)  that  are  indistinguishable  from
those  in Y, F represents  a  generator  that  tries  to  generate
images F(y) similar to those in X.  and  denote the dis-
criminators  aiming  to  distinguish  between G(x)  and  y,  and
F(y) and x, respectively. 

LGAN (G,DY ,X,Y) =Ey∼pdata(y)
[
logDY (y)

]
+

Ex∼pdata(x)
[
log(1−DY (G(x))

]
. (2)

 

LGAN (F,DX ,Y,X) =Ex∼pdata(x)
[
logDX (X)

]
+

Ey∼pdata(y)
[
log(1−DX (F(y))

]
. (3)

E

λc λi

Equations  (2)  and  (3)  show  the  adversarial  loss,  where 
means  the  expected  value.  Moreover,  following Zhu  et  al.
(2017),  the consistency loss and identity loss [Eqs.  (4)  and
(5)]  are  further  added to  help  retain  the  internal  variability
and avoid  introducing additional  bias,  the  weights  of  these
terms are controlled by  and ,  which are set  to  10 and
0.5, respectively. 

Lcyc (G,F) =Ex∼pdata(x) [∥ F (G (x))− x∥1]+
Ey∼pdata(y)

[∥G (F (y))− y∥1
]
, (4)

 

Lidentity (G,F) = Ey∼pdata(y) |∥G (y)− y∥1
]
+

Ex∼pdata(x) [∥ F (x)− x∥1] . (5)
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The  generative  networks  consist  of  three  components:
down-sampling with two convolutional layers,  followed by
nine residual blocks comprising a total of 21 convolutional
layers,  and  finally  two  up-sampling  layers  (as  depicted  in
Fig. 1). The first residual block, represented in Fig. 1c, con-
tains five convolutional layers, while the subsequent blocks,
as shown in Fig. 1d, each consist of two convolutional lay-
ers. This deep generative network helps generate finer SST
images. The architecture of the discriminator aligns with the
model  presented  by Zhu  et al. (2017).  Gradient  clipping  is
employed to optimize the training of the model. In training
the  GAN,  the  Wasserstein  loss  is  utilized,  chosen  for  its
known stability (Arjovsky et al., 2017).

In the following development, we employ linear regres-
sion and composite analysis and determine the statistical sig-
nificance according to a two-tailed Student’s t-test.
 

3.    Results

Figure 2 presents a qualitative comparison of daily ST
on the same date (3 November 2004). CycleGAN essentially
preserves  most  features  present  in  CESM2 results,  notably
the La Niña-like SSTAs (Figs. 2b, c), while also exhibiting
a  greater  resemblance  to  observations  (Figs.  2a, c).  This
improvement  is  particularly  notable  in  regions  such  as  the
tropical Atlantic, South Africa, and western South America.
This comparison effectively signifies that the data post-pro-
cessed  by CycleGAN, in  addition  to  correcting  model  out-
comes, preserves the internal variability of the model.

In  the  subsequent  analysis,  we  evaluate  the  correction
from three key perspectives: climatology, interannual variabil-
ity, and extreme events. To validate the effectiveness of the
correction,  we  performed  comparisons  between  results
obtained from CESM2, GAN-corrected SSTs, and four refer-

 

 

Fig. 1. (a) Schematic of the CycleGAN. (b) The details  of ResNet,  which has nine residual blocks.  (c) The details  of the first
residual block, and (d) other blocks.
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ence datasets (HadISST, ERSST, NCEP, OISST).
 

3.1.    The climatological bias

Figure  3 illustrates  the  disparities  between  CESM2
model  data,  GAN-corrected  outcomes,  and  observational
datasets.  Overall,  CESM2 displays a  substantial  warm bias
when compared to the four SST datasets. There is a distinct
dipole bias in SSTs in the North Atlantic, particularly along
the  Gulf  Stream  and  North  Atlantic  Current,  where  warm
and cold biases coexist in proximity. A similar dipole bias is
observed  in  the  Southern  Ocean  at  mid-to-high  latitudes.
Notably, prominent warm biases are noticeable near eastern
boundary upwelling regions, encompassing areas close to Cal-
ifornia, South America, and Africa (Figs. 3a, c, e, g). These
biases  are  likely  associated  with  discrepancies  in  wind
stress patterns within these regions and the spatial resolution

of the model (Capotondi et al., 2020). Additionally, a signifi-
cant warm bias is evident in the tropical Pacific. This warm
bias  is  distinct  from  the  well-known  cold  tongue  bias
observed  in  most  CMIP5  models  and  even  differs  from
CESM1, signifying disparities between CESM2 and its prede-
cessors,  a  feature  also  acknowledged  in  previous  CESM2
assessment studies (e.g., Capotondi et al., 2020).

After the correction by the CycleGAN, there is a substan-
tial reduction in the bias in the climatological SSTs (Figs. 2b,
d, f, h). The dipole biases in the North Atlantic and the South-
ern  Hemisphere  are  notably  reduced.  Only  minor  cold
biases persist in the vicinity of eastern Africa and to the east
of New Zealand. Furthermore, the warm biases in the tropical
Pacific are significantly attenuated. The overall bias dimin-
ishes from 1.25°C (1.19°C to 1.28°C) in CESM2 to 0.52°C
(0.4°C to 0.57°C). Through a comparative analysis involving

 

 

Fig.  2. Qualitative comparison of  the intermittency in daily ST on the same date (3
November  2004),  from the  (a)  observation,  (b)  CESM2 model,  and (c)  CycleGAN-
based  post-processing.  White  contour  lines  (with  an  interval  of  1  K)  denote  the
monthly SSTAs in November 2004.
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four sets of SST data, we find that the biases, both in magni-
tude and spatial pattern, are highly consistent across the differ-
ent datasets. This robust agreement underscores the reliability
of  our  evaluation.  In  addition,  CycleGAN  exhibits  clear

advantages over traditional methods. We compare its perfor-
mance  with  the  widely  utilized  modified  QM  approach
(Jakob  Themeßl  et al.,  2011; Bai  et al.,  2016),  widely
employed  for  the  correction  of  historical  simulations  and

 

HadISST ERSST

OISSTNCEP

 

Fig. 3. The disparities between climatological annual mean SSTs in (a, c, e, g) CESM2 simulations, (b, d, f, h) GAN-
corrected SSTs, and (a, b) HadISST, (c, d) ERSST, (e, f) NCEP, (g, h) OISST.
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future projections within CMIP. When applied to SST correc-
tion, the modified QM yields an error of 0.6, which is inferior
to the results obtained by CycleGAN (Fig. 4). It is noteworthy
that  the  performance of  QM and CycleGAN is  remarkably
close in tropical regions, and in the North Pacific, QM even
outperforms  it  in  the  latter.  However,  QM  exhibits  larger
errors in the high-latitude regions of the Southern Ocean.

The  errors  calculated  based  on  the  NCEP  data  align
closely with those from other datasets, further affirming the
suitability of this dataset for model training. Given the sub-
stantial  convergence  in  results  across  three  SST  datasets
(HadISST, ERSST, OISST), for the sake of brevity, we will
exclusively employ HadISST as the observational reference
in the subsequent sections.
 

3.2.    The bias in interannual variability

In  addition  to  addressing  biases  at  the  climatological
scale, an essential aspect of climate model correction, and per-
haps even more crucial, is the capability to simulate the inter-
annual  dynamical  variability  such  as  ENSO  and  the  IOD.
The accurate representation of these variabilities directly influ-
ences the ability to capture global and regional climate vari-

ability. Figure 5 displays the DJF ENSO SSTA, in observa-
tions,  CESM2,  and  CycleGAN-corrected  SST.  Notably,
CESM2 exhibits an excessive westward bias in the equatorial
Pacific, with a pronounced warm bias in the equatorial west-
ern Pacific. This bias is well-known and prevalent in many
models,  constituting  a  common  bias  in  most  CMIP5  and
CMIP6  models  (Tao  et al.,  2015, 2018, 2019; Jiang  et al.,
2021).  It  is  worth  noting  that  this  substantial  warm bias  in
ENSO SSTAs can be primarily attributed to the climatologi-
cal  cold  tongue  bias  (Li  and  Xie,  2012, 2014; Jiang  et al.,
2021). The cold tongue bias manifests as a phenomenon in
the  model  simulation,  signifying  that  the  climatological
annual mean (SST) in the central-eastern tropical Pacific is
colder than observed. This is characterized by an excessively
strong and westward-extending cold tongue in the equatorial
Pacific. The presence of the cold tongue bias can influence
SSTAs in this region through its impact on temperature advec-
tion  and  other  related  processes.  Despite  the  warm  bias  in
the western Pacific in CESM2, its climatology also exhibits
a warm bias. This suggests that the warm bias in the western
Pacific of CESM2 may be attributed to other mechanisms.

The  modified  QM  method  exhibits  limited  efficacy  in

 

 

Fig.  4. The  disparities  between  climatological  annual  mean  SSTs  in  (a)
CESM2 simulations, (b) QM-corrected SST, and NCEP.
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the  correction  of  ENSO SSTs.  Its  RMSE and PCC closely
align with CESM2, and is ineffective in addressing distribu-
tional  biases,  such  as  excessive  westward  bias  (Fig.  5c).
After correction by the CycleGAN, the warm bias is greatly
diminished in the equatorial-western Pacific, with its intensity
comparable to observations. Furthermore, the warm bias in
the  central  and  eastern  Pacific,  as  observed  in  CESM2,  is
also notably reduced. A significance test was performed for
composite  El  Niño  SSTs,  revealing  significant  differences
between CESM2 and the CycleGAN-corrected results in sev-
eral  regions,  including  the  equatorial  western  Pacific,  the
equatorial sides of the central Pacific, and the tropical eastern
Pacific  (Fig.  5d).  This  indicates  a  statistically  reliable
improvement by the CycleGAN in addressing warm biases
in  CESM2.  Overall,  upon  applying  the  correction,  we
observe  a  significant  reduction  in  the  excessive  westward
bias of ENSO SST variability, with the distribution closely
resembling observations. The RMSE decreases from 0.14 in
CESM2 to 0.06, and the PCC increases from 0.89 to 0.95, cor-
responding  to  a  57%  reduction  and  a  6.7%  improvement,
respectively.

Figure  6 shows  the  standard  deviation  of  SSTs  in  the
Indian  Ocean  and  the  IOD  SSTA.  In  the  CESM2  simula-
tion,  there  is  a  significant  overestimation  of  variability  in
the southeastern and western equatorial Indian Ocean, with
the  center  of  variability  extending  too  far  westward  in  the
southeastern Indian Ocean when compared to observations.
Similar to its limited efficacy in ENSO correction, the modi-
fied  QM method demonstrates  constrained  effectiveness  in
the  correction  of  SST  variability.  While  the  CycleGAN
markedly reduces the biases in the southeastern and western
equatorial Indian Ocean compared to CESM2, the excessive
westward  extension  is  substantially  attenuated.  The  IOD
mode also exhibits bias, for example, the standard deviation
of SSTs (Fig. 6f). In CESM2, the IOD SSTA in the southeast-
ern  Indian  Ocean  is  significantly  stronger  and  extends  too

far westward compared to observations. In observations, nega-
tive  anomalies  roughly  extend  to  85°E,  while  in  CESM2,
the negative anomaly extends to around 70°E. CycleGAN suc-
cessfully  reduces  this  bias,  with  the  negative  anomaly
located east of 80°E, significantly closer to observations. As
such,  its  performance  is  noticeably  superior  to  modified
QM,  with  the  latter  making  only  marginal  adjustments  to
the intensity of SSTA. The RMSE of CycleGAN is substan-
tially  decreased  compared  to  CESM2,  from  0.34  to  0.21,
while the PCC increases from 0.82 to 0.92.
 

3.3.    The bias in SST extremes

In addition to interannual dynamical variability, marine
heatwaves are  a  recent  focus in  oceanic  research.  Frequent
marine  heatwaves  significantly  impact  marine  ecosystems,
particularly  marine  fisheries  and  coral  reefs  (Oliver  et al.,
2017, 2018, 2021; Holbrook  et al.,  2019; Liu  et al.,  2022,
2023). We primarily use the 95th percentile of daily SSTA
to  quantify  SST extremes  and  evaluate  the  performance  of
CESM2  and  the  GAN-correction  in  representing  them.  To
conduct  the  evaluation,  we  utilized  NCEP  data  spanning
from 1991 to 2014 for testing. Figure 7 illustrates the 95th per-
centile of NCEP, CESM2, and CycleGAN-corrected SSTA,
respectively. In the NCEP data, regions with high values of
the 95th percentile are concentrated in the western boundary
current extension regions, the central and eastern equatorial
Pacific, and the northeast Pacific Ocean, consistent with previ-
ous  studies  (Chen et al.,  2014; Echevin et al.,  2018; Oliver
et al., 2017, 2021). When compared to NCEP, the spatial dis-
tribution of the 95th percentile in CESM2 is generally simi-
lar. However, CESM2 significantly overestimates the inten-
sity  of  extreme  SSTAs  in  the  central  and  eastern  tropical
Pacific while underestimating it in the northwest Pacific. In
contrast,  CycleGAN-corrected  extreme SSTA shows better
agreement with observations in terms of intensity and spatial
distribution. The PCC improves from 0.56 to 0.88, and the

 

 

Fig.  5. ENSO-related  SSTAs  in  (a)  observation,  (b)  CESM2,  (c)  QM,  and  (d)  CycleGAN.  Stippling  indicates  where  the
regressions are significant at the 95% confidence level, based on a Student’s t-test. The hatched areas represent significant
differences in El Niño composite SSTs within the CycleGAN-corrected fields compared to CESM2. The black contour line
denotes +0.2 K in observations.
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RMSE  decreases  from  0.5  to  0.32,  slightly  outperforming
those obtained with modified QM.

Particularly  noteworthy  is  the  significant  reduction  of
the  overestimation  bias  in  the  central  and  eastern  tropical
Pacific  and  the  enhancement  in  the  underestimation  in  the
northeast Pacific, making CycleGAN's results more consis-
tent with NCEP. Figures 8 and 9 present probability density
functions  (PDFs)  of  SSTAs  in  the  tropical  (5°S–5°N)  and
northeast  (40°–60°N;  180°–120°W)  Pacific,  respectively.
On average, CESM2 exhibits a wider distribution in the trop-
ics, indicating a stronger variability. CESM2 has a 95th per-
centile of 1.41 degrees for the tropical region, while NCEP
only has 1.18 degrees, resulting in a 19.5% overestimation.
This  aligns  with  the  earlier  result  of  the  overestimation  of
SSTAs  in  the  tropical  region,  especially  in  the  central  and
eastern Pacific (Fig. 7). After correction, the distribution of
SSTA in the tropics closely matches observations, with 95th

percentiles  of  approximately  1.17,  indicating  a  substantial
reduction in the overestimation bias of CESM2 in the trop-
ics. A similar situation is observed in the northeast Pacific.
In this area, the SSTA distribution in CESM2 is overall nar-
rower than observations, indicating a lower variability. Corre-
spondingly, its  95th percentile is lower than that of NCEP.
After  correction,  the distribution and the 95th percentile  of
SSTAs are much closer to NCEP.

Unlike  methods  such  as  modified  QM  that  directly
adjust data by quantiles to make the local distribution closer
to observations, the CycleGAN learns and transforms high-
dimensional  data  features.  An  important  question  naturally
arises:  which  key  processes  does  CycleGAN  capture  that
result  in  the  improvement  of  simulated  SST  extremes?  To
address this question, we further perform an analysis of vari-
ability at various timescales, involving interannual variabili-
ties  and  frequencies  that  less  than  90  days  (encompassing

 

(h)

 

Fig. 6. (Left) The standard deviation of SST and (b) the IOD-related SSTA during SON in (a, e) observation, (b, f) CESM2,
(c, g) QM, and (d, h) CycleGAN, respectively. Stippling indicates the regressions are significant at the 95% confidence level,
based on a Student’s t-test.  The hatched areas represent significant differences in positive IOD composite SSTs within the
CycleGAN compared to CESM2.
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the Madden−Julian Oscillation (MJO), Intraseasonal Oscilla-
tion  (ISO),  and synoptic-scale  eddies). Figure  10a presents
the  interannual  standard  deviation  of  DJF  SSTs  based  on
observations.  It  primarily  exhibits  an ENSO-like  pattern  in
the equatorial central and eastern Pacific. Moreover, notable
high-variability regions are evident in the Northeast Pacific,
North Pacific, mid-latitudes in the South Pacific, and adjacent
to western boundary currents. In general, the spatial distribu-
tion  of  SST  interannual  variability  in  observations  closely
resembles  the  distribution  of  the  95th  percentile  of  SSTA

(shown in Fig. 7), indicating the direct influence of interan-
nual variability, especially ENSO, on extreme SSTs as in pre-
vious studies (Doi et al., 2015; Oliver et al., 2021). Addition-
ally,  ENSO  can  induce  SST  variations  in  the  Northeast
Pacific and North Atlantic regions by exciting Rossby wave
trains  (Wang  et al.,  2021, 2022, 2023),  further  influencing
extreme events in those areas (Trenberth et al., 1998; Johnson
and  Kosaka,  2016).  When  compared  to  observations,
CESM2 exhibits an overall overestimation of interannual vari-
ability,  particularly  pronounced  in  the  central-eastern

 

 

Fig. 7. Same as in Fig. 5, but for the 95th percentile of SSTAs.

 

 

Fig. 8. PDFs of average tropical SSTAs for (a) NCEP and CESM2, and (b) NCEP and CycleGAN. Shading indicates
areas where the SSTA is above the 90th percentile.
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Pacific.  This  overestimation  is  likely  related  to  the  higher
ENSO  variability  within  CESM2  (Capotondi  et al.,  2020).
The consistency of the stronger interannual variability in the
tropical  central-eastern  Pacific  and  the  larger  bias  of
extreme SSTAs in Fig. 7 suggest that the overestimation of
interannual  variability  is  a  key  factor  contributing  to  the
high  bias  in  extremes  in  CESM2.  In  contrast  to  CESM2,
SST  fields  corrected  by  the  CycleGAN show a  substantial
reduction  in  the  error  in  interannual  variability,  with  the
RMSE  decreasing  from  0.31  to  0.1.  CycleGAN-corrected
results exhibit a closer match to observations in terms of inten-
sity,  particularly  in  the  tropical  Pacific,  South  Pacific,
Atlantic, and Indian Ocean. While the intensity in the tropical
central-eastern  Pacific  remains  higher  than  observed,
notable  improvements  are  observed  compared  to  CESM2,
consistent with the enhancement seen in the extreme SSTAs
for this region in Fig. 7. Concerning intraseasonal and synop-
tic-scale variability, the variability in NCEP is predominantly
concentrated in the tropical Pacific and western boundary cur-
rent regions (Fig. 10d), likely associated with boundary cur-
rents, subseseanal variations (Liu et al., 2022a, 2022b), and
active mesoscale eddy activity (Oliver et al., 2021). CESM2
simulations  generally  underestimate  variability  at  these
scales  (Fig.  10e).  In  contrast,  CycleGAN-corrected  SSTs
exhibit substantial improvements, especially in the Northeast
Pacific,  where  the  distribution  is  in  closer  agreement  with
NCEP (Fig. 10f). In summary, the CycleGAN demonstrates
significant  improvements  in  SST  variability  at  different
timescales, facilitating more accurate simulation of the com-
plex oceanic dynamic processes, particularly regarding inter-
annual variability and variability at intraseasonal and synoptic
scales. 

4.    Conclusion and discussion

In  this  study,  we  employed  CycleGAN  to  correct  the

daily  SSTs  from  CESM2  historical  simulations.  We  con-
ducted a comprehensive assessment of this model, consider-
ing various aspects such as climatology, interannual variabil-
ity,  and extremes.  Our findings reveal  significant  improve-
ments across these evaluation dimensions. At the climatologi-
cal  scale,  the  CycleGAN  substantially  reduced  bias  in
annual  mean  climatological  SST.  Specifically,  there  is  a
58%  reduction  in  RMSE  relative  to  CESM2,  from  1.25
(1.19–1.28)  degrees  in  CESM2 to  0.52 (0.4–0.57)  degrees.
At  the  interannual  scale,  involving  two  primary  tropical
modes, ENSO and IOD, we observe significant enhancements
in simulating these modes with the CycleGAN. For  ENSO
SSTAs, the RMSE decreases from 0.14 to 0.06, correspond-
ing to a reduction of 57%. CycleGAN effectively addresses
a common bias of ENSO SST found in many climate mod-
els, known as the excessive westward bias in the equatorial
Pacific that traditional methods, like quantile mapping, strug-
gle to rectify. In the case of IOD, CESM2 tends to produce
excessively  strong  and  westward-extending  anomalies  in
the  southeastern  Indian  Ocean.  After  the  correction,  these
biases  are  substantially  reduced,  resulting  in  an  increased
PCC of up to 0.92.

Moreover, we investigate the performance in simulating
SST  extremes.  The  CycleGAN corrects  the  overestimation
in extremes in most regions and addresses the underestimation
in the Northeast  Pacific.  The improved performance of  the
CycleGAN  in  simulating  the  distribution  of  SSTAs  and
their associated extremes can be attributed to its ability to cap-
ture different temporal scales of variability, including interan-
nual variability and variability at intraseasonal and synoptic
scales, encompassing periods shorter than 90 days.

In summary, our study demonstrates that the CycleGAN
offers  comprehensive  enhancements  across  various
timescales and physical processes. Its utility extends beyond
merely  correcting  specific  statistical  measures  such  as  first
and second-order moments locally; it also enhances the simu-

 

 

Fig. 9. Same as in Fig. 8, but for the Northeast Pacific SSTAs.
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lation  of  critical  air-sea  coupling  modes  like  ENSO  and
IOD. These findings underscore the significant potential of
CycleGAN as  a  valuable  tool  for  climate  model  correction
and climate projection.

We  employ  NCEP  data  for  the  evaluation  of  SST
extremes. It is crucial to highlight the potential inconsistency
among various observational datasets at the daily timescale,
particularly in oceanic data. Consequently, it  is essential to
clarify  that  the  presented  results  regarding  SST  extremes
should  be  interpreted  as  an  assessment  of  the  capacity  of
CycleGAN  to  enhance  the  simulation  of  SST  extremes
rather than its precision in replicating observations. Achiev-
ing the latter would demand a more extensive dataset, particu-
larly observational station data.

Moreover, it is crucial to acknowledge that, beyond the
correction of historical simulations, the central consideration
is  the  adaptability  of  these  methods  to  future  projections.
Recent  studies,  exemplified  by Hess  et al. (2022),  suggest
that CycleGAN, through post-processing or incorporating con-
straints like global mean values, can reproduce trend signals
under global  warming.  Further research is  needed to refine
the  capability  of  capturing  regional-scale  warming

responses.  Subsequent  investigations  should  also  involve
the development of correction datasets encompassing multi-
ple models and variables, accompanied by a comprehensive
analysis  of  physical  mechanisms  and  laws  in  the  corrected
data. Comparisons with methods integrated with climate mod-
els, such as surface flux adjustments, should be explored. Fur-
thermore,  the  direct  coupling  of  the  proposed  correction
method with climate models represents a critical avenue for
future inquiry.
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