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a b s t r a c t 

The Amazon basin plays a crucial role in biodiversity and carbon storage, but its local rainfall 

is anticipated to decrease under global warming. Carbon dioxide removal (CDR) is being con- 

sidered as a method to mitigate the impact of global warming. However, the specific effects 

of CDR on Amazon rainfall have not been well understood. Here, an idealized CDR experi- 

ment reveals that the reduced rainfall over the Amazon basin does not recover. Significantly 

weaker rainfall was found during the ramp-down period compared to the ramp-up period 

at the same CO2 concentration. This response is associated with the enhanced El Niño-like 

warming in the tropical Pacific Ocean during the CDR period. This warming pattern has 

dual effects: weakening the zonal circulation and causing anomalous descent directly over 

the Amazon basin, while also triggering a stationary Rossby wave train that propagated 

downstream and generated anomalous ascent over the Sargasso Sea. This anomalous as- 

cent induces anomalous descent and weakens moisture transport over the Amazon basin 

by the local meridional circulation. Consequently, precipitation is reduced over the Amazon 

basin in response to the weakened zonal and meridional circulation. Our findings indicate 

that even if the atmospheric CO2 concentration is lowered, the Amazon basin will remain 

susceptible to drought. Effective local climate adaptation strategies are urgently needed to 

address the vulnerability of this critical ecosystem. 
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Introduction 

The Amazon basin, Earth’s largest river basin spanning 1 

around 6 million km ², is a vital hydrological system teeming 2 

with rivers, wetlands, and floodplains ( Fassoni-Andrade et al., 3 

2021 ; Towner et al., 2020 ). Beyond impacting the seven coun- 4 

tries it crosses (e.g., Brazil and Peru), the Amazon basin is a key 5 

hub of tropical convection, shaping global atmospheric circu- 6 

lation and influencing the carbon, energy, and hydrological 7 

cycles ( Fassoni-Andrade et al., 2021 ; Towner et al., 2020 ). For 8 

instance, the Amazon River’s main stem annually discharges 9 

2.1 × 105 m3 /s, contributing 20 % of the total global freshwater 10 

flow into oceans ( Fassoni-Andrade et al., 2021 ; Towner et al., 11 

2020 ). This substantial river discharge results from abundant 12 

rainfall, averaging 2000–2200 mm per year, mainly sourced 13 

from local evapotranspiration and moisture transport from 14 

the tropical Atlantic Ocean ( Cai et al., 2020 ; Ciemer et al., 15 

2020 ; Towner et al., 2020 ). This rainfall is critical for the local 16 

rainforest, biodiversity, and acts as a driving force for atmo- 17 

spheric general circulation ( Burleyson et al., 2016 ; Cai et al., 18 

2020 ; Fassoni-Andrade et al., 2021 ; Tang et al., 2016 ; Towner 19 

et al., 2020 ). A precipitation deficit can reduce ecosystem res- 20 

piration ( Doughty et al., 2015 ; Thakur et al., 2018 ) and lead to 21 

tree mortality due to hydraulic failure ( Bréda et al., 2006 ), car- 22 

bon starvation ( McDowell et al., 2008 ), and an increased inci- 23 

dence of wildfires. Consequently, this reduction in biodiversity 24 

and the weakened forest-rainfall feedback can promote fur- 25 

ther drought occurrences ( Staal et al., 2020a ; Zemp et al., 2017 ). 26 

Additionally, diminished vegetation undermines the rainfor- 27 

est’s capacity to absorb carbon, thereby exacerbating global 28 

warming and affecting the global climate. For instance, due to 29 

increased tree mortality, the Amazon temporarily turned into 30 

a carbon source during two major droughts in 2005 and 2010 31 

( Boulton et al., 2022 ; Feldpausch et al., 2016 ). 32 

Given the pivotal role of Amazon rainfall, extensive ef- 33 

forts have focused on investigating the multiscale factors in- 34 

fluencing it. On the synoptic scale, equatorial Kelvin waves, 35 

primarily originating from the Pacific and South America, are 36 

recognized as the dominant mode of variability ( Liebmann 37 

et al., 2009 ; Mayta et al., 2021 ). The intraseasonal variabil- 38 

ity is modulated by equatorial Rossby wave-like disturbances 39 

( Mayta and Adames, 2023 ; Mayta et al., 2022 ) and the Madden- 40 

Julian Oscillation (Liu et al., 2020; Mayta et al., 2020 ; Reboita 41 

et al., 2021 ). On the interannual timescale, sea surface tem- 42 

perature (SST) anomalies in the Pacific and Atlantic Oceans 43 

play a crucial role in influencing Amazon rainfall. Specifically, 44 

the warm phase of the El Niño-Southern Oscillation (ENSO) is 45 

expected to cause rainfall deficits and drought over the Ama- 46 

zon basin, mainly by modulating the Walker circulation ( Cai 47 

et al., 2020 ; Kay et al., 2022 ; Towner et al., 2020 ). The tropi- 48 

cal Atlantic Ocean affects the rainfall over the Amazon by in- 49 

fluencing the location of the Intertropical Convergence Zone 50 

(I51 

( C52 

A53 

O54 

A55 

T56 

it causes, also significantly influence rainfall in the Amazon 57 

basin. Deforestation, which involves converting forests into 58 

pastures and croplands, can directly modify local rainfall pat- 59 

terns. This is due to changes in the moisture cycle and energy 60 

balance, which are associated with reduced evapotranspira- 61 

tion and surface roughness, and increased albedo ( Li et al., 62 

2022 ). On broader spatial scales, diminished evapotranspira- 63 

tion could impair the moisture recycling process that trans- 64 

ports water vapor from oceans to tropical forests (Baidya et al., 65 

2002; Leite-Filho et al., 2021 ). Conversely, on smaller scales, de- 66 

forestation may lead to a patchy distribution of surface rough- 67 

ness and atmospheric heating, potentially increasing rainfall 68 

in deforested regions and areas downwind of these patches 69 

( Khanna et al., 2018 ; McGuffie et al., 1995 ). Most models project 70 

an increase in Amazon temperature, at least 0.5 °C higher than 71 

the global mean ( Torres et al., 2021 ), but a decrease in Amazon 72 

rainfall under the global warming scenario ( Almazroui et al., 73 

2021 ; Cai et al., 2020 ; Pascale et al., 2019 ; Thome Sena and Mag- 74 

nusdottir, 2020 ). Global warming tends to reduce forest via- 75 

bility via increasing dry-season length ( Adams et al., 2017 ; Fu 76 

et al., 2013 ), the frequency of drought and wildfire ( Boulton 77 

et al., 2022 ; Brando et al., 2020, Wang and Huang, 2022 ). For- Q3 
78 

est degradation can reduce evapotranspiration and hence the 79 

moisture transported further westward, reducing rainfall in 80 

Amazon basin ( Boulton et al., 2022 ; Salati et al., 1979 ). And 81 

these changes can be further amplified by a large-scale mois- 82 

ture recycling feedback, with increased drought in the Ama- 83 

zon basin ( Boulton et al., 2022 ). Meanwhile, increased El Niño 84 

events in the future may also cause a precipitation deficit in 85 

the Amazon basin through atmospheric teleconnection ( Kay 86 

et al., 2022 ; McGregor et al., 2022 ). 87 

The previously mentioned studies on Amazon rainfall are 88 

mainly focused on modern climatic conditions and global 89 

warming scenarios. However, to reduce and prevent danger- 90 

ous climate change and impacts, a global temperature rise 91 

threshold of 1.5 °C/2 °C for the end of 21st century has been 92 

set, known as “the Paris Agreement”. Achieving this thresh- 93 

old involves various anthropogenic CO2 removal (CDR) meth- 94 

ods, leading to lower atmospheric CO2 concentrations ( IPCC, 95 

2021 ; Keller et al., 2018 ). Typically, an idealized CDR scenario 96 

is prescribed by the Carbon Dioxide Removal Model Intercom- 97 

parison Project (CDRMIP), in which the atmospheric CO2 con- 98 

centration rises at a rate of 1 % per year until it quadruples, 99 

followed by a symmetric decline ( Keller et al., 2018 ). This CDR 100 

scenario has been extensively studied, examining tempera- 101 

ture, precipitation, carbon cycle, ITCZ, sea level, and more ( Cao 102 

et al., 2023 ; Kim et al., 2022 ; Kug et al., 2022 ; Park and Kug, 103 

2022 ; Wu et al., 2015 ). Upon the recovery of atmospheric CO2 104 

concentration to pre-industrial revolution levels, the global 105 

mean temperature is abnormally high ( Qu and Huang, 2023 ; 106 

Wu et al., 2010 ), impacting water vapor capacity and global 107 

mean rainfall. However, the response to CDR varies markedly 108 

from region to region, for example, East Asia ( Song et al., 2022 ), 109 

P
r

TCZ), which generally follows the location of the warm SST 

iemer et al., 2020 ; Towner et al., 2020 ; Yoon and Zeng, 2010 ). 
dditionally, longer-term factors such as the Pacific Decadal 
scillation and Atlantic Multidecadal Oscillation contribute to 
mazon rainfall variability ( Cai et al., 2020 ; Reboita et al., 2021 ; 
owner et al., 2020 ). Human activities, especially deforestation 

S
a
a
u
in

lease cite this article as: Suqin Zhang, Xia Qu, Gang Huang et al., R
emoval scenario: Remote dynamic processes, Journal of Environm
outh Asia ( Zhang et al., 2023 ), Pacific ITCZ ( Zhou et al., 2022 ), 110 

nd ENSO ( Liu et al., 2023 ). The evolutionary characteristics 111 

nd response mechanisms of rainfall over the Amazon basin 112 

nder such an idealized CDR scenario forms the focus of our 113 

vestigation. 114 

educed rainfall over the Amazon basin in an idealized CO2 
ental Sciences, https://doi.org/10.1016/j.jes.2024.05.035 
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Table 1 – The detailed information of CMIP6 models used

No. Model name Country 

1 ACCESS-ESM1-5 Australia 
2 CAS-ESM2-0 China 
3 CanESM5 Canada 
4 CESM2 USA 

5 CNRM-ESM2-1 France 
6 GFDL-ESM4 USA 

7 MIROC-ES2L Japan 
8 NorESM2-LM Norway 
9 UKESM1-0-LL UK 

1. Data and methods 

The study leverages several experiments from the Coupled
Model Intercomparison Project six (CMIP6), including: (1
historical experiment, in which the models are compelled
by observed atmospheric CO2 concentration from the mid
nineteenth century to 2014 ( Eyring et al., 2016 ); (2) pre
industrial control (piControl) experiment, in which the atmo
spheric CO2 concentration and the climate system condition
were held at pre-industrial level ( Eyring et al., 2016 ), serves as 
reference for the 1 %CO2 experiment; (3) 1pctCO2 experiment
The same as the piControl experiment, except that the atmo
spheric CO2 concentration increased by 1 % per year until i
quadrupled ( Eyring et al., 2016 ); and (4) 1pctCO2-cdr experi
ment, starting from the climate states in the 140th year of th
1pctCO2 experiment, CO2 concentration drops at a rate of 1 %
per year for 140 years to recover to the pre-industrial level, and
then stays constant for 60-year restoring period ( Keller et al
2018 ). The combined 1pctCO2 and 1pctCO2-cdr experiment
form the idealized CDR scenario, spanning 280 years. Thi
scenario, marked by substantial CO2 concentration changes
aims for a high signal-to-noise ratio. The response of the cli
mate system under the idealized CDR scenario is assessed rel
ative to the climatology of the last 100 years of piControl ex
periments. Monthly outputs from nine models participating
in these experiments, detailed in Table 1 , are employed. Each
model contributes a single run for analysis. The Multi-Mode
Ensemble Mean (MME) approach is employed to reduce inter
nal variability and systematic biases. The response is deemed
robust when the signs of results from more than six model
align with that of the MME. This study primarily concentrate
on the austral summer (DJF) mean, a period when the major
ity of the annual total rainfall occurs ( Cai et al., 2020 ; Fassoni
Andrade et al., 2021 ). 

To evaluate the simulation performance of CMIP6 models
this study employs the monthly mean reanalysis and obser
vational datasets, which include: (1) Global Precipitation Cli
matology Project (GPCP) monthly precipitation dataset with a
horizontal resolution of 2.5 °× 2.5 ° ( Adler et al., 2018 ); (2) Na
tional Centers for Environmental Prediction-Department o
Energy (NCEP-DOE) reanalysis data with a horizontal resolu
tion of 2.5 °× 2.5 ° ( Kanamitsu et al., 2002 ); (3) Hadley Centr
Global Sea Ice and Sea Surface Temperature (HadISST) data

with a horizontal resolution of 1.0 °× 1.0 ° ( Rayner et al., 2003 ). 
The climatology of DJF mean in 1979–2014 represents the cur- 

Please cite this article as: Suqin Zhang, Xia Qu, Gang Huang et al
removal scenario: Remote dynamic processes, Journal of Environ
is study. 

bel Horizontal gird References 

1f1 145 × 192 Ziehn et al., 2020 
1f1 128 × 256 Zhang et al., 2020 
2f1 64 × 128 Swart et al., 2019 
1f1 192 × 288 Danabasoglu et al., 2020 
1f2 128 × 256 Séférian et al., 2019 
1f1 180 × 288 Dunne et al., 2020 
1f2 64 × 128 Hajima et al., 2020 
1f1 96 × 144 Seland et al., 2020 
1f2 144 × 192 Senior et al., 2020 

rent climate of the Amazon basin, which is compared with
that of historical experiments to assess the performance o
CMIP6 models. All above CMIP6 and reanalysis datasets ar
spatially interpolated into a common 1 °× 1 ° grid by a bilinea
interpolation. 

2. Results 

2.1. Present-day climate of the Amazon basin and model
simulations 

The Amazon basin, nestled within the South American mon
soon zone, experiences robust convection during the austra
summer with pronounced upwelling ( Fig. 1 a and b; Marengo
et al., 2012 ). The precipitation pattern, shaped by the South
Atlantic Convergence Zone (SACZ), displays a distinctiv
northwest-southeast orientation, defining the primary system
of the South American monsoon ( Llopart et al., 2020 ). Trad
winds facilitate a north-easterly or easterly moisture flow
from the tropical Atlantic Ocean to the Amazon basin, gen
erating a potent moisture flux convergence ( Fig. 1 b and c) piv
otal for sustaining an active SACZ ( Durán-Quesada et al., 2012
Muñoz et al., 2015 ). The CMIP6 MME simulations reasonably
reproduce the above rainfall-related distributional features
but with some slight difference in magnitude. Compared to
the observations, the CMIP6 MME simulations are weaker in
terms of rainfall, and rainfall-related variables (e.g., vertica
velocity). For the underlying driver, sea surface temperatur
(SST), the CMIP6 models have double ITCZ bias ( Fig. 1 e and f
accompanied by a positive rainfall bias in the southeast Pa
cific ( Fig. 1 b). This recurring double ITCZ bias, observed from
CMIP3 to CMIP6 model simulations, remains a focal point in
climate modeling research ( Adam et al., 2018 ; Si et al., 2021 ).

The Taylor diagram systematically evaluates the mode
performance skill across the domain (45 °S-45 °N, 180 °−30 °W
for rainfall and related variables ( Fig. 2 ). Spatial correlation co
efficients between the simulation of individual models and
observations consistently surpass 0.6, except for the vertica
velocity at 500 hPa in CAS-ESM2–0 model. The simulation per
formance of CMIP6 MME for all variables outperforming any
single model, with the minimum correlation coefficient highe
than 0.79. We therefore utilize the CMIP6 MME to scrutiniz

the response of Amazon basin rainfall under the idealized 196 

CDR scenario. 197 

., Reduced rainfall over the Amazon basin in an idealized CO2 
mental Sciences, https://doi.org/10.1016/j.jes.2024.05.035 
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g. 1 – Climatology (a and b) precipitation (shading; unit: mm
) vertically integrated moisture fluxes from the surface to 10
nit: 10−5 kg/(m2 ·s)), and (e, f) SST (shading, unit: °C) of DJF m
analysis or HadISST results; Right panel: CMIP6 MME resul
ttps:// github.com/ gamamo/ AmazonBasinLimits/ tree/ maste

.2. Irreversible response of austral summer rainfall over 
e Amazon basin 

g. 3 a shows the evolution of anomalous DJF mean rainfall 
ver the Amazon basin under the idealized CDR scenario. 
long with the increase in CO2 concentration, the Amazon 

asin experienced a notable decline in rainfall, surpassing 
 %, leading to an abnormally dry situation (red curve). Here, 
o 40-year periods for the initial and peak levels of CO2 

ncentration are chosen, i.e., Years 1–40 (RU) and Years 
1–140 (Peak). Precipitation decreased significantly in the 

mazon basin during the CO2 peak compared to the RU 

hase, and the result passes the inter-model sign agreement 
st and the significance test of 90 % difference in mean 

ig. 3 b and Appendix A Fig. S1). This feature aligns with 

e results under the global warming scenario ( Almazroui 
 al., 2021 ; Thome Sena; Magnusdottir 2020 ). Subsequently, 

s CO2 concentration decreases, rainfall begins to increases 
lease cite this article as: Suqin Zhang, Xia Qu, Gang Huang et al., R
emoval scenario: Remote dynamic processes, Journal of Environm
) and 500 hPa vertical velocity (contour; unit: 10−2 Pa/s), (c, 
a (vector; unit: 102 kg/(m ·s)) and their divergence (shading; 
climate variables in 1979–2014. Left panel: NCEP-DOE 
e red solid line denotes the Amazon basin 

lue curve). However, the recovery is slower than the initial 
ecline, resulting in a significant and robust reduction in 

recipitation in the Amazon basin during the RD (Years 
41–280) period compared to the RU (Years 1–40) period with 

e same averaged CO2 concentration ( Fig. 4 c and Appendix 
 Fig. S1). Among the nine modes analyzed, eight models ex- 
ibit anomalous drought condition in Amazon basin, with the 
ception for the MIROC-ESM2L model (Appendix A Fig. S2). 

his suggests that the asymmetric response of Amazon basin 

infall is robust. Eventually, Amazon rainfall has not fully 
covered and remains below the initial level after the 60-year 

O2 resotring period ( Fig. 3 a). Besides, reduced rainfall also 
ppears over the equatorial North Pacific and Atlantic, while 
nhanced rainfall occurs over the equatorial South Pacific, 
dicating a southward displacement of the ITCZ reported in 

revious studies ( Kug et al., 2022 ). Notably, increased rainfall 
 also noted over the Florida Peninsula and the Sargasso 
ea. 
educed rainfall over the Amazon basin in an idealized CO2 
ental Sciences, https://doi.org/10.1016/j.jes.2024.05.035 
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Fig. 2 – Taylor diagram of climatological variables in 

1979–2014. The reference point is the results of NCEP-DOE 
reanalysis or HadISST data. Numbers 1–9 represent the 
model serial numbers, and number 10 denotes the result of 
CMIP6 MME. 

To comprehend this asymmetric response of rainfall over 233 

the Amazon basin, moisture budget analysis is employed ( Qu 234 

et al., 2015 ; Zuo et al., 2019 ) as expressed by Eq. (1) : 235 

P′ = E′ − 〈⇀ 

V 

′ 
· ∇h ̄q 

〉 − 〈⇀ 

V · ∇h q
′ 〉 − 〈⇀ 

V 

′ 
· ∇h q

′ 〉

− 〈
ω′ · ∂p ̄q 

〉 − 〈
ω̄ · ∂p q′ 〉 − 〈

ω′ · ∂p q′ 〉 + Res (1) 

where, P (mm/day), V (m/s), ω (Pa/s), and q (g/g) are the pre- 236 

cipitation, horizontal winds, vertical velocity, and specific hu- 237 

midity, respectively. The overbar denotes the reference state of 238 

the piControl experiments, while a prime denotes the depar- 239 

ture of these variables from the reference state. 〈∗〉 represents 240 

a mass integration from surface to 100 hPa. The anomalous 241 

precipitation is balanced by anomalous evaporation (the first 242 

term on the right-hand of Eq. (1) ), anomalous horizontal mois- 243 

ture transport (the third to four terms on the right-hand of Eq. 244 

(1) ), and vertical moisture transport (the fifth to seventh terms 245 

on the right-hand of Eq. (1) ). The last term Res is the residual 246 

term. As shown in Fig. 4 a, the reduced DJF rainfall over the 247 

Amazon basin is primarily attributed to the vertical moisture 248 

gradient transported by anomalous vertical motion (i.e., dy- 249 

namical processes), and is partially offset by the increased hu- 250 

midity (i.e., thermodynamical processes). Compared to these 251 

two terms, other processes (e.g., evaporation) are weak and the 252 

residual term is negligible. 253 

The dominant processes that contribute to the asymmetric 254 

rainfall response are further examined in Fig. 4 b and c, which 255 

show the differences in the mid-tropospheric vertical veloc- 256 

ity and lower-tropospheric specific humidity. Due to the irre- 257 

versible response of surface temperature ( Qu and Huang, 2023 ; 258 

Zhang et al., 2023 ), a warmer atmosphere during the RD pe- 259 

riod can hold more water vapor ( Fig. 4 c). In the Amazon basin, 260 

where ascent prevails climatologically, more water vapor con- 261 

tributes to enhance precipitation, which reflects the “wet-get- 262 

wetter” mechanism ( Chou et al., 2009 ; Held and Soden, 2006 ). 263 

However, the above thermodynamic process is not the whole 264 

story, and not all places with increased moisture have seen an 265 

increase in rainfall. Particularly, the decreased rainfall over the 266 

Amazon basin is mainly due to the dynamical process, with an 267 

anomalous strong descending motion ( Fig. 4 b). This descend- 268 

ing motion overcomes the contribution of increased moisture 269 

and becomes the direct cause of the asymmetric response of 270 

the Amazon rainfall. 271 

2.3. Dynamical mechanisms responsible for the 272 

irreversible response 273 

2.3.1. The role of zonal circulation and equatorial Pacific SST 274 

To scrutinize the mechanisms generating anomalous de- 275 

scending motion over the Amazon basin, Fig. 5 a and b il- 276 

r the
ange
and e 
 of n
, the Q4 
Fig. 3 – (a) Evolution of DJF mean rainfall anomalies (%) ove
the CO2 ramp-up (red), ramp-down (blue), and restoring (or
rainfall (unit: mm/day) between the (b) CO2 peak (101–140) 
dotted area passes the model sign consistency test (six out
interpretation of the references to color in this figure legend
Please cite this article as: Suqin Zhang, Xia Qu, Gang Huang et al
removal scenario: Remote dynamic processes, Journal of Environ
 Amazon basin corresponding to CO2 concentration during 
) periods. Spatial pattern of MME difference in DJF mean 

RU (1–40) periods, (c) RD (241–280) and RU (1–40) periods. Th
ine) and 90 % significance test for difference in mean. (For 
 reader is referred to the web version of this article.) 
., Reduced rainfall over the Amazon basin in an idealized CO2 
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g. 4 – (a) The difference in the terms of the moisture budget equ
eriods. Error bars indicate the inter-model uncertainty (1.96 × sta
nit: 10−2 Pa/s) at 500 hPa between the RD and RU periods. The do

f nine). (c) The same as (b), but for the specific humidity (unit: g/k

strate large-scale divergent circulation in the upper and 

wer troposphere. Following the Helmholtz theorem ( Holton 

nd Hakim, 2013 ), horizontal velocity can be decomposed 

to rotational and divergent parts, where only the latter 
ssociates with vertical motion. Fig. 5 a and b reveal lower- 
opospheric convergence and upper-tropospheric divergence 
ver the equatorial eastern Pacific, accompanied by anoma- 
us upper-tropospheric convergence and low-tropospheric 

d
th
lo
in
th
e

ce

lease cite this article as: Suqin Zhang, Xia Qu, Gang Huang et al., R
emoval scenario: Remote dynamic processes, Journal of Environm
ation (unit: mm/day) between RD (241–280) and RU (1–40) 
ndard deviation). (b) The difference in the vertical velocity 

tted area passes the model sign consistency test (six out 
g) at the 850 hPa. 

ivergence over the Amazon basin. This feature aligns with 285 

e zonal circulation cell depicted in Fig. 5 c, featuring anoma- 286 

us ascending motion over the eastern Pacific and descend- 287 

g motion over the Amazon basin. Therefore, subsidence over 288 

e Amazon is potentially linked to remote forcing over the 289 

quatorial Pacific Ocean. 290 

The anomalous divergent circulation and zonal circulation 291 

ll shown in Fig. 5 resemble the observed mechanism by 292 

educed rainfall over the Amazon basin in an idealized CO2 
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Fig. 5 – (a and b) Difference in velocity potential (color line; unit: 106 m2 /s) and divergence winds (vector; unit: m/s) at 
850 hPa (a) and 200 hPa (b) between the RD (241–280) and RU (1–40) periods. Black dots and vectors shown denote the region 

that satisfies the model sign consistency. (c) Cross-section of differences in zonal and vertical velocities (vectors), averaged 

for 15.5 °S–0.5 °N between the RD and RU periods. (d) Same as (c), but for meridional and vertical velocities, averaged over 
75 °–50 °W. Shaded values are differences in vertical velocities (unit: −10−2 Pa/s). Color contour line indicates climatological 
vertical velocities obtained from the last 100 years of the piControl experiment. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.) 

which ENSO affects Amazon rainfall ( Cai et al., 2020 ; Kay et al., 293 

2022 ). Thus, Fig. 6 examines the SST anomalies in the Pacific 294 

Ocean for the RU and RD periods as well as their differences. 295 

During the RU period, there are anomalous warm SST anoma- 296 

lies over the equatorial central Pacific, consistent with El Niño- 297 

like SST pattern predicted under the global warming scenario 298 

( Cai et al., 2018 , 2020 ). In the RD period, a more pronounced 299 

warming in the equatorial Pacific Ocean occurs due to the 300 

weakened Walker circulation and the attenuated upwelling 301 

( Chadwick et al., 2013 ; Song et al., 2022 ; Zhang et al., 2023 ). 302 

Therefore, compared to the RU period, an El Niño-like anoma- 303 

lous SST pattern is seen over the tropical Pacific Ocean dur- 304 

ing the RD period ( Fig. 6 c and Appendix A Fig. S3), consistent 305 

 ; 306 

 307 

c 308 

- 309 

 310 

s 311 

 312 

. 313 

2.3.2. The role of meridional circulation and Rossby wave train 314 

Apart from the anomalous zonal circulation, the anomalous 315 

meridional circulation also contributes to the anomalous 316 

descending motion over the Amazon basin. Fig. 5 reveals 317 

low-tropospheric convergence and upper-tropospheric di- 318 

vergence over the Sargasso Sea, accompanied by increased 319 

local rainfall ( Fig. 3 b). This induces anomalous ascending 320 

motion and upper-tropospheric northerly winds, leading to 321 

anomalous descending motion over the Amazon basin, form- 322 

ing an obvious meridional circulation cell ( Fig. 5 d). In-depth 323 

exploration of this meridional circulation is presented in 324 

Fig. 7 , which shows the anomalous low-tropospheric circula- 325 

tion and the vertically integrated moisture transport. There 326 

 327 

f 328 

- 329 

 c 330 

 331 

l 332 

s 333 

f 334 
with recent studies under the CDR scenario ( Liu et al., 2023
Pathirana et al., 2023 ; Zhou et al., 2022 ). This anomalous warm
SST in the equatorial Pacific Ocean generate low-tropospheri
convergence, ascending motion, and upper-tropospheric di
vergence ( Fig. 5 ), which further affects the Amazon rainfall via
the anomalous zonal circulation. Thus, the zonal circulation i
recognized as the first pathway linking the Pacific Ocean warm
SST anomalies to the reduced rainfall over the Amazon basin
Please cite this article as: Suqin Zhang, Xia Qu, Gang Huang et al
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appear anomalous southwesterly winds over the Amazon
basin and the Caribbean Sea, which implies a slowdown o
the climatological northeasterly trade winds and the cross
equatorial flow, as well as the moisture transport ( Fig. 1
and d). This is consistent with the divergence of vertically
integrated moisture fluxes ( Fig. 7 b) and the reduced rainfal
( Fig. 3 ) over the Amazon basin. Notice that the anomalou
southwesterly winds over the Caribbean Sea are part o
., Reduced rainfall over the Amazon basin in an idealized CO2 
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g. 6 – (a and b) SST anomalies (unit: K) with the tropical me
 piControl, respectively. (c) Same as (a), but for the differenc
odel sign consistency. 

n anomalous cyclone centered over the Florida Peninsula 
ig. 7 a). 

It is evident that the anomalous low-tropospheric cyclone 
ver the Florida Peninsula and the increased rainfall over the 
argasso Sea are associated with the ascending branching of 
e local meridional circulation. Thus, the next question is, 

ow they are generated? Fig. 8 shows the difference in the 
pper-troposphere stream function between the RD and RU 

eriods. Two anomalous anticyclones appear over the tropical 
stern Pacific Ocean, understood as the equatorial Rossby 
ave response to warm SST anomalies underneath ( Gill, 
80 ; Matsuno, 1966 ). More importantly, there are alternative 

clones and anticyclones in the northern hemisphere, form- N

lease cite this article as: Suqin Zhang, Xia Qu, Gang Huang et al., R
emoval scenario: Remote dynamic processes, Journal of Environm
T removed during the RU (a) and RD (b) periods compared 

ween the RD and RU periods. The dotted areas satisfy the 

g a stationary Rossby wave train. This argument is verified 

y the wave activity flux ( Takaya and Nakamura, 2001 ), which 

n reflect the propagation of Rossby wave energy. However, 
e wave activity flux is derived under the assumption of 

uasi-geostrophic balance, which may not be fully applicable 
 the Tropics. Therefore, the Rossby ray tracings ( Karoly, 

983 ; Shaman and Tziperman, 2005 ) are employed to fur- 
er detect the stationary Rossby wave train. As shown in 

g. 8 , both the wave activity flux and the Rossby ray tracings 
flect a northeastward wave energy propagation from the 
opical northeastern Pacific to the southern United States of 
merica (USA), and then turn southeast to reach the tropical 

orth Atlantic. 360 
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Fig. 7 – (a) Spatial difference in the 850 hPa winds (unit: m/s) between the RD (241–280) and RU (1–40) periods. (b) Same as (a), 
but for the vertically integrated moisture fluxes from the surface to 100 hPa (vector; unit: 102 kg/(m ·s)) and their divergence 
(shading; unit: 10−5 kg/(m2 ·s). The vectors shown and the dotted area satisfy the model sign consistency test. 

Fig. 8 – Response of the stream function (shading; unit: 106 

m2 /s), wave activity flux (vector; unit: m2 /s2 ), and wave ray 

trajectory (colored lines) at 200 hPa during RD compared to 

the RU period. DJF climatology during the RU period is the 
baseline. Stream function with zonal mean removed. Wave 

 

, 

 361 

 362 

- 363 

ward phase tilt is a common feature of the Rossby wave train, 364 

which may be linked to the energy conversion from the ba- 365 

sic flow ( Chen et al., 2020 ; Hu et al., 2023 ). The increased 366 

rainfall and ascending motion over the Sargasso Sea are lo- 367 

cated east of the upper-tropospheric cyclone, explained by the 368 

quasi-geostrophic omega equation ( Gu et al., 2018 ; Holton and 369 

Hakim, 2013 ). Because the basic flow is westerly, positive vor- 370 

ticity advection and warm advection tend to occur east of the 371 

upper-tropospheric cyclone anomaly, favoring ascending mo- 372 

tion over the Sargasso Sea. Once ascending motion appears, 373 

it can be further enhanced by the diabatic heating related to 374 

the increased rainfall, leading to positive feedback (e.g., Gu 375 

et al., 2018 ). Consequently, ascending motion over the Sar- 376 

gasso Sea and sinking over the Amazon basin form a local 377 

meridional circulation ( Fig. 5 ). As the climatological rainfall 378 

over the Amazon basin is large, giving rise to robust rainfall- 379 

circulation feedback. Anomalous descendance can reduce the 380 

rainfall, leading to a cooling anomaly that, in turn, amplifies 381 

the anomalous descendance. Similar mechanisms were elu- 382 

cidated in Wu et al. (2010) . This feedback loop results in an 383 

easier occurrence of a sink anomaly over the Amazon basin. 384 

r 385 

 386 

- 387 

388 

f 389 

. 390 

s 391 

s 392 

have delved into the factors influencing Amazon rainfall un- 393 
activity flux values within 10 ° of the equators are omitted. 
Path of a Rossby ray, starting with an initial zonal 
wavenumber 5 (pink, orange) and 6 (blue, green) at 7.5 °N, 
145 °W (pink), and 12.5 °N, 145 °W (orange), and 0 °, 150 °W 

(blue), and 2.5 °N, 145 °W (green). The vectors shown and the
dotted area satisfy the model sign consistency. (For 
interpretation of the references to color in this figure legend
the reader is referred to the web version of this article.) 

Noteworthy is the anomalous upper-tropospheric cyclone
over the southern USA ( Fig. 8 ), slightly westward relative to
the low-tropospheric cyclone ( Fig. 7 a). Such a slightly west
Please cite this article as: Suqin Zhang, Xia Qu, Gang Huang et al
removal scenario: Remote dynamic processes, Journal of Environ
Therefore, beyond the anomalous zonal circulation, anothe
pathway linking warm Pacific SST anomalies and decreased
Amazon rainfall is the Rossby wave train and meridional cir
culation. 

3. Summary and discussion 

The Amazon basin, encompassing approximately 40 % o
global tropical forests, stands as the world’s largest river basin
Essential to these tropical ecosystems is the region’s copiou
rainfall, typically exceeding 2000 mm/year. Numerous studie
., Reduced rainfall over the Amazon basin in an idealized CO2 
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Fig. 9 – Schematic diagram shows key processes considered in this study, by which the DJF mean rainfall over the Amazon 

exhibits an irreversible response, with anomalous drought. Red shading, orange shading, and green shading indicate the 
enhanced El Niño-like SST anomalies, the anomalous drought over the Amazon, and the anomalous wetting over the 
Caribbean during the RD period compared to the RU period, respectively. Blue arrows represent the zonal circulation. 
Double-dashed arrows denote the stationary Rossby wave train. Purple arrows indicate the local meridional circulation. 

der current climatic conditions and its alterations in the face 394 

of global warming. This manuscript investigates the evolution 395 

of Amazon rainfall under an idealized CDR scenario, with par- 396 

ticular attention to its asymmetric response. CMIP6 simula- 397 

tions highlight that, when the atmospheric CO2 is removed 398 

to pre-industrial level, the Amazon basin could experience 399 

anomalous drought during the following 60 years. 400 

The mechanisms behind this reduced Amazon rainfall 401 

are synthesized in Fig. 9 . The moisture budget analysis un- 402 

derscores that the reduced rainfall mainly resulted from a 403 

dynamical process involving anomalous descending, which 404 

overrides the thermodynamical effect of increased moisture. 405 

The fundamental cause of this anomalous descending motion 406 

lies in an El Niño-like SST pattern in the Pacific Ocean. On the 407 

one hand, this anomalous SST pattern directly affect the Ama- 408 

zon rainfall through the anomalous zonal circulation—air as- 409 

cends over the equatorial eastern Pacific and descends over 410 

the Amazon basin. On the other hand, it indirectly modulates 411 

Amazon rainfall via the Rossby wave train and meridional cir- 412 

culation. Corresponding to the warm equatorial eastern Pa- 413 

cific, a northeast-southeast propagating Rossby wave train is 414 

excited, leading to an upper-level anomalous cyclone over the 415 

southern USA. Consequently, an anomalous meridional circu- 416 

lation emerges, with an ascending branch in the Sargasso Sea 417 

and a descending branch over the Amazon basin. 418 

If the idealized CDR pathway is implemented, the Amazon 419 

basin may experience anomalous drought. Reduced rainfall 420 

can greatly affect nutrient input into Amazon basin rivers and 421 

other freshwater systems, impacting both the environment 422 

and the people who rely on these resources ( Parmesan et al., 423 

2022 ; CLS, 2024 ). For instance, droughts can isolate fish popu- 424 

lations, making migration and genetic diversity maintenance 425 

challenging. Additionally, reduced rainfall can exacerbate pos- 426 

itive feedback among drought, deforestation, and wildfires, 427 

leading to reduced biodiversity and weaker carbon seques- 428 

tr429 

a430 

ca431 

with every mm of water deficit. Deforestation, in turn, has 432 

caused an estimated 4 % of the recent observed drying. There- 433 

fore, when assessing the climate effects of CDR, it’s crucial to 434 

consider the impact of secondary hazards. 435 
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ation, which, in turn, contributes to global warming ( Wang 
nd Huang, 2022 ; Zemp et al., 2017 ). Staal et al. (2020a) indi- 
tes that the deforestation tends to increase 0.13 % per year 
lease cite this article as: Suqin Zhang, Xia Qu, Gang Huang et al., R
emoval scenario: Remote dynamic processes, Journal of Environm
Since most of the models participating in the CDR exper- 
ent only conducted 60 years of restoring period, we can- 

ot analyze how long it will take for precipitation in Amazon 

asin to fully recover. Such temporary reduction in Amazon 

asin rainfall have been attributed to an enhanced El Niño- 
ke SST pattern in the Pacific Ocean, which is the result of the 
symmetric response of the ocean heat uptake. The oceans 
bsorb heat until the middle of the CO2 ramp-down period; 
fter that, the oceans continue to release heat ( Yeh et al., 
021 ). Correspondingly, slow SST-driven response lags the evo- 
tion of CO2 concentration remarkably, and dominates the to- 
l climate response during the CO2 ramp-down period ( Zhang 

t al., 2024 ; Zhou et al., 2022 ). The contribution of slow re- 
onse ocean, as well as ocean heat uptake continue to di- 
inish during the CO2 restoring period. If a restoring period 

 maintained long enough, the reduced rainfall in the Ama- 
n basin will gradually recover as the contribution of the slow 

sponse diminishes. 
Situated in the South American monsoon region, the Ama- 

n basin’s rainfall is intricately linked to the onset and re- 
eat of the monsoon. Whether the weakened rainfall over 
e Amazon basin means a shorter rainy season is an im- 

ortant question that needs to be investigated. Moon and Ha 
020) projected a shorter rainy season over the South Amer- 
an monsoon region under the global warming scenario due 
 advanced retreat and delayed onset. Investigating the re- 
onse of the Amazon’s rainy season length under the CDR 

enario is a focal point for future research. 
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