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Abstract 24 

Climate models are vital for understanding and projecting global climate change 25 

and associated impacts. However, these models suffer from biases that limit their 26 

accuracy in historical simulations and the trustworthiness of future projections. 27 

Addressing these challenges requires addressing internal variability, hindering direct 28 

alignment between model simulations and observations and thwarting conventional 29 

supervised learning methods. Here, we employ an unsupervised Cycle-consistent 30 

Generative Adversarial Network (CycleGAN), to correct daily Sea Surface 31 

Temperature (SST) simulations from the Community Earth System Model 2 (CESM2). 32 

Our results reveal that the CycleGAN not only corrects climatological biases but also 33 

improves the simulation of major dynamic modes including the El Niño-Southern 34 

Oscillation (ENSO) and the Indian Ocean Dipole mode, as well as SST extremes. 35 

Notably, it substantially corrects climatological SST biases, decreasing the globally 36 

averaged Root Mean Square Error (RMSE) by 58%. Intriguingly, the CycleGAN 37 

effectively addresses the well-known excessive westward bias in ENSO SST anomalies, 38 

a common issue in climate models that traditional methods, like quantile mapping, 39 

struggle to rectify. Additionally, it substantially improves the simulation of SST 40 

extremes, raising the pattern correlation coefficient (PCC) from 0.56 to 0.88 and 41 

lowering the RMSE from 0.5 to 0.32. This enhancement is attributed to better 42 

representations of interannual variability and variabilities at intraseasonal and synoptic 43 

scales. Our study offers a novel approach to correct global SST simulations, and 44 

underscores its effectiveness across different time scales and primary dynamical modes. 45 

 46 

Keywords: Generative Adversarial Networks, Model Bias, Deep Learning, El Niño-47 

Southern Oscillation, Marine Heatwaves. 48 

 49 
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Article highlights: 53 

 We employ an unsupervised Cycle-consistent Generative Adversarial Network 54 

(CycleGAN), to correct daily Sea Surface Temperature (SST) simulations, 55 

addressing the issue that supervised learning methods cannot be directly applied to 56 

climate model corrections. 57 

 CycleGAN corrects climatological biases and improves the simulation of primary 58 

dynamic modes including the El Niño-Southern Oscillation (ENSO) and Indian 59 

Ocean Dipole mode, as well as SST extremes. 60 

 CycleGAN addresses the well-known excessive westward bias into the equatorial 61 

Pacific in ENSO SST anomalies, a common bias in climate models. 62 

  63 

Page 3 of 28

https://mc03.manuscriptcentral.com/aasiap

Advances in Atmospheric Sciences

in 
pre

ss



For Review Only

1 Introduction 64 

Climate Model simulations play an indispensable role in contemporary climate 65 

science, serving as fundamental resources for climate change detection, attribution, and 66 

projection. Their simulations, especially from the Coupled Model Intercomparison 67 

Project (CMIP), underpin the assessments conducted by the Intergovernmental Panel 68 

on Climate Change (IPCC), offering comprehensive evaluations and pivotal references 69 

that inform global climate science and guide critical decision-making (Taylor et al., 70 

2012; Eyring et al., 2016). However, the utility of CMIP models in both detection and 71 

attribution of climate change, as well as climate projections, is significantly impeded 72 

by various persistent model biases (Zheng et al., 2012; Li and Xie, 2012; 2014; Liu et 73 

al., 2013; Tao et al., 2018; Jiang et al., 2019; Capotondi et al., 2020; Danabasoglu et 74 

al., 2020; Jiang et al., 2021).  75 

Among these biases, a prominent concern centers on the representation of sea 76 

surface temperatures (SSTs) in coupled general circulation models (CGCMs), 77 

especially the persistent cold tongue bias found in the equatorial Pacific (Li and Xie, 78 

2012; 2014; Zheng et al., 2012). This bias, characterized by a cold bias in the 79 

climatological SSTs, has long perplexed the climate community due to its potential 80 

repercussions on climatological precipitation patterns and the accurate simulation of 81 

the El Niño-Southern Oscillation (ENSO), thereby affecting the fidelity of global 82 

climate simulations (Tao et al., 2018; Jiang et al., 2019; Tang et al., 2023). Additionally, 83 

substantial biases manifest at interannual scales, with ENSO SST variability exhibiting 84 

an excessive westward extension into the equatorial western Pacific, consequently 85 

impacting the ENSO decay and regional climate variability. These biases, commonly 86 

present in most of the CMIP models, are hardly canceled out even by multi-model 87 

means (Huang and Ying, 2015; Jiang et al., 2021; Tang et al., 2023), thus impacting 88 

historical simulations and future projections. 89 

Efforts to rectify these climate model biases have spawned the development of 90 

various methodologies. Traditional methods predominantly center around the local 91 

adjustment of specific statistical characteristics. These adjustments typically target 92 
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parameters like the mean and variance (involving variance adjustment; Teutschbein and 93 

Seibert, 2012; Chen et al., 2011; Chen et al., 2013; Li et al., 2019), and frequency 94 

distributions (via techniques like quantile mapping; QM; Themessl et al., 2011). 95 

However, these approaches fall short of providing precise corrections for model errors 96 

at the daily timescale and in dynamical climate variabilities. Traditional methods 97 

primarily focus on specific statistical features or target adjustments at individual grid 98 

points and can by design not correct spatial patterns (Hess et al., 2022; 2023). 99 

The challenge of climate model bias correction is exacerbated by the internal 100 

variability of the Earth system, characterized by inherent nonlinearity (Hawkins and 101 

Sutton, 2011; Deser et al., 2012; Deser et al., 2016; Hu et al., 2018; Wang et al., 2020). 102 

In particular, discrepancies arise due to internal variability in model simulations and 103 

observations at corresponding times. Consequently, discerning whether disparities 104 

between model fields and observational datasets arise from internal variability or 105 

genuine model biases poses a substantial challenge; identifying and on that basis 106 

correcting the bias in a particular day in model data is inherently difficult. This presents 107 

a hurdle when trying to employ traditional statistical methods and supervised learning 108 

techniques to correct model simulations. 109 

The advent of deep learning, particularly the development of unsupervised and 110 

semi-supervised learning techniques, has introduced novel avenues for addressing 111 

climate model biases. Generative Adversarial Networks (GANs), pioneered by 112 

Goodfellow et al. (2014), leverage a generator-discriminator framework to generate 113 

images that are in their characteristics and statistical properties virtually 114 

indistinguishable from target images. Subsequently, Hoffman et al. (2017), Yi et al. 115 

(2017), and Zhu et al. (2017) expanded upon the GAN methodology, introducing the 116 

Cycle-consistent GAN (CycleGAN), which incorporates a cycle-consistent loss to 117 

facilitate the bidirectional transformation of data styles. Pan et al. (2021) have explored 118 

the application of this method to rectify precipitation data in CGCM simulations, 119 

yielding promising results in correcting precipitation biases in the United States. 120 

Moreover, the extension of this method to global precipitation simulations 121 
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demonstrated its efficacy in correcting spatial patterns and in ameliorating the Pacific 122 

double Intertropical Convergence Zone (ITCZ) bias (Hess et al., 2022; 2023), a 123 

prevalent issue across most CGCMs. These applications have predominantly 124 

concentrated on evaluating the enhancement of fundamental statistical aspects of 125 

precipitation.  126 

The critical inquiry here is whether this method can also bias-correct modelled 127 

SST fields. Furthermore, can it correct the dynamical oceanic modes? And can it adapt 128 

to variations driven by distinct physical mechanisms at various time scales? These 129 

questions presently lack definitive answers. 130 

In this paper, we employ a CycleGAN-based approach to correct global daily SST 131 

fields to answer these questions. We find that our method not only addresses biases at 132 

climatological averages but also tackles errors associated with ENSO, the Indian Ocean 133 

Dipole (IOD), and SST extremes. This paper is structured as follows: Section 2 provides 134 

introductions of datasets and methodology employed, Section 3 unveils the primary 135 

results, and Section 4 discusses and summarizes our findings. 136 

2 Data and method  137 

2.1 Data  138 

We employ daily surface temperature (ST) from the National Center for 139 

Environmental Prediction-Department of Energy Atmospheric Reanalysis (NCEP; 140 

Kanamitsu et al. 2002) at a resolution of 2.5°× 2.5° for the period 1950 to 2014. 141 

Modelled daily ST fields from 1950 to 2014 are obtained from the Community Earth 142 

System Model 2 (CESM2; Danabasoglu et al., 2020), a widely used and well-organized 143 

model, which can be considered a state-of-the-art climate model. The global gridded 144 

monthly SST datasets from Extended Reconstructed Sea Surface Temperature 145 

(ERSST.v5; Huang et al. 2017), the NOAA 1/4° Daily Optimum Interpolation SST 146 

(OISST; Huang et al., 2021), and the Hadley Centre Global Sea Ice and SST (HadISST) 147 
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are utilized. These three SST datasets and NCEP ST, ranging from 1991~2014, are 148 

utilized for model testing. All datasets are interpolated to a resolution of 2.5°× 2.5°.  149 

To extract ENSO-related SST variability, we utilize the unstandardized Niño-3.4 150 

index. This index is defined as the SST anomalies (SSTA) averaged over the region 151 

between 5°S~5°N, and 120°W~170°W from December to February (DJF). We 152 

performed a regression analysis of this unstandardized Niño-3.4 index on the 153 

interannual SSTA, thus revealing the underlying ENSO-driven SST variability. The 154 

IOD SST is obtained in a similar way as that in ENSO SST but uses the Dipole Mode 155 

Index defined as the anomalous SST gradient between the western equatorial Indian 156 

Ocean (50°E-70°E and 10°S-10°N) and the southeastern equatorial Indian Ocean 157 

(90°E-110°E and 10°S-0°N) during September-October-November (SON). 158 

2.2 Methods  159 

CycleGAN is a groundbreaking deep learning model designed for unpaired image-160 

to-image translation. It enables the transformation of images from one domain to 161 

another even when paired training data is unavailable (Zhu et al. 2017), such as in the 162 

case tackled in the present study. Unpaired image-to-image translation involves the 163 

mapping of images from one domain (the source domain, denoted by X) to another (the 164 

target domain, denoted by Y) without requiring a direct one-to-one correspondence 165 

between the images in the two domains. In our case, we apply the principles of unpaired 166 

image-to-image translation for the correction of CGCM daily SST data. Specifically, 167 

we consider CESM2 SSTs as domain X and NCEP STs as domain Y. The training and 168 

validation data comprises CESM2 and NCEP ST data from 1950 to 1990, while the 169 

testing data spans from 1991 to 2014. A normalization process is employed to scale the 170 

data.  171 

Fig. 1 gives the schematic of the CycleGAN. Within the CESM2, biases exist in 172 

the internal variability and external forced responses within model simulations on any 173 

given day. However, the internal variability in observations on the same day may not 174 

correspond to that in the model. For example, the model might simulate an El Niño year, 175 
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while observations indicate a La Niña year. Therefore, directly adjusting the model to 176 

match the observational state is evidently inaccurate. Our goal is to eliminate biases in 177 

internal variability and external forced responses while simultaneously preserving the 178 

model's internal variability (e.g., the ENSO phase). 179 

To achieve this objective, a generator (G(x)) and a discriminator are first employed 180 

in this model (Fig. 1a). The primary function of the generator is to transform CESM2 181 

data to observational SST, while the discriminator assesses whether the generated 182 

outcomes originate from observations. A balance between these two components yields 183 

the best results, wherein the discriminator should be incapable of distinguishing 184 

between images generated by the generator and observations. This phase aids in 185 

correcting the GCM simulations. Subsequently, a secondary generator (F(y)) and 186 

discriminator are utilized to retain internal variability. The secondary generator, F(y), 187 

is tasked with reconverting the previously generated images back into the original 188 

CESM2 data. This process ensures that the generated images by G(x) retain the 189 

essential characteristics of CESM2. From a mathematical perspective, the architecture 190 

of F(y) ensures a bidirectional mapping between CESM2 and the observational data. In 191 

a certain context, this secondary generator facilitates the preservation of internal 192 

variability within CESM2, as internal variability is a predominant aspect on a daily 193 

scale. 194 

 The loss function of this model is as follows: 195 

ℒሺ𝐺, 𝐹, 𝐷௑, 𝐷௒ሻ ൌ ℒୋ୅୒ሺ𝐺, 𝐷௒, 𝑋, 𝑌ሻ ൅ ℒୋ୅୒ሺ𝐹, 𝐷௑, 𝑌, 𝑋ሻ
൅𝜆௖ℒୡ୷ୡሺ𝐺, 𝐹ሻ ൅ 𝜆௜ℒ୧ୢሺ𝐺, 𝐹ሻ

ሺ1ሻ 196 

The loss includes the adversarial loss of X -> Y ( ℒୋ୅୒ሺ𝐺, 𝐷௒, 𝑋, 𝑌ሻ ), Y->X 197 

(ℒୋ୅୒ሺ𝐹, 𝐷௑, 𝑌, 𝑋ሻ), the consistency loss (ℒୡ୷ୡሺ𝐺, 𝐹ሻ), and the identity loss (ℒ୧ୢሺ𝐺, 𝐹ሻ). 198 

G denotes a generator that tries to generate images G(x) that are indistinguishable from 199 

those in Y, F represents a generator that tries to generate images F(y) similar to those 200 

in X. 𝐷௒ and 𝐷௑ denote the discriminators aiming to distinguish between G(x) and y, 201 

and F(y) and x, respectively. 202 
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ℒୋ୅୒ሺ𝐺, 𝐷௒, 𝑋, 𝑌ሻ ൌ 𝔼௬∼௣data ሺ௬ሻሾlog𝐷௒ሺ𝑦ሻሿ ൅ 𝔼௫∼௣data ሺ௫ሻൣlog൫1 െ 𝐷௒൫𝐺ሺ𝑥ሻ൯൧ ሺ2ሻ 203 

ℒୋ୅୒ሺ𝐹, 𝐷௑, 𝑌, 𝑋ሻ ൌ 𝔼௫∼௣data ሺ௫ሻሾlog𝐷௫ሺ𝑋ሻሿ ൅ 𝔼௬∼௣data ሺ௬ሻൣlog൫1 െ 𝐷௑൫𝐹ሺ𝑦ሻ൯൧ ሺ3ሻ 204 

Moreover, as by Zhu et al. (2017), the consistency loss and identity loss are further added to 205 

help retain the internal variability and avoid introducing additional bias, the weights of these 206 

terms are controlled by 𝜆௖ and 𝜆௜, which are set to 10 and 0.5, respectively.   207 

ℒୡ୷ୡሺ𝐺, 𝐹ሻ ൌ 𝔼௫∼௣data ሺ௫ሻൣ∥ 𝐹൫𝐺ሺ𝑥ሻ൯ െ 𝑥 ∥ଵ൧ ൅ 𝔼௬∼௣data ሺ௬ሻൣ∥ 𝐺൫𝐹ሺ𝑦ሻ൯ െ 𝑦 ∥ଵ൧ ሺ4ሻ 208 

ℒidentity ሺ𝐺, 𝐹ሻ ൌ 𝔼௬∼௣data ሺ௬ሻ ∣∥ 𝐺ሺ𝑦ሻ െ 𝑦 ∥ଵ൧ ൅ 𝔼௫∼௣data ሺ௫ሻሾ∥ 𝐹ሺ𝑥ሻ െ 𝑥 ∥ଵሿ ሺ5ሻ 209 

The generative networks consist of three components: down-sampling with two 210 

convolutional layers, followed by nine residual blocks comprising a total of 21 convolutional 211 

layers, and finally two up-sampling layers (as depicted in Fig. 1). The first residual block, 212 

represented in Fig. 1c, contains five convolutional layers, while the subsequent blocks, as 213 

shown in Fig. 1d, each consist of two convolutional layers. This deep generative network helps 214 

generate finer SST images. The architecture of the discriminator aligns with the model 215 

presented by Zhu et al. (2017). Gradient clipping is employed to optimize the training of the 216 

model. In training GAN, the Wasserstein Generative Adversarial Network is utilized, chosen 217 

for its known stability (Arjovsky et al., 2017). 218 

In the following we employ linear regression and composite analysis, and the 219 

statistical significance is determined using the two-tailed Student’s t-test. 220 

 221 
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 222 

Figure 1 (a) Schematic of the CycleGAN. (b) The details of ResNet, which has 9 223 

residual blocks. (c) The details of the first residual block, and (d) other blocks. 224 

3 Results  225 

Figure 2 presents a qualitative comparison of daily ST on the same date (3th 226 

November 2004). CycleGAN essentially preserves most features present in CESM2 227 

results, notably the La Niña-like SSTA (Figs. 2b and 2c), while also exhibiting a greater 228 

resemblance to observations (Figs. 2a and 2c). This improvement is particularly notable 229 

in regions such as the tropical Atlantic, South Africa, and western South America. This 230 

comparison effectively signifies that the data post-processed by CycleGAN, in addition 231 

to correcting model outcomes, preserves the internal variability of the model. 232 

In the subsequent analysis, we evaluate the correction from three key perspectives: 233 

climatology, interannual variability, and extreme events. To validate the effectiveness 234 

of the correction, we performed comparisons between results obtained from CESM2, 235 

GAN-corrected SSTs, and four reference datasets (HadISST, ERSST, NCEP, OISST).  236 
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 237 

Figure 2 Qualitative comparison of the intermittency in daily ST on the same 238 

date (3th November 2004), for the (a) observation, (b) CESM2 model and (c) 239 

CycleGAN-based post-processing. White contour lines (with interval of 1K) denote 240 

monthly SSTA in November 2004. 241 

3.1 The climatological bias 242 
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 243 

Figure 3 The disparities between climatological annual mean SSTs in (a, c, e, g) CESM2 244 

simulations, (b, d, f, h) GAN-corrected SST, and (a, b) HadISST, (c, d) ERSST, (e, f) NCEP, 245 

(g, h) OISST. 246 

Figure 3 illustrates the disparities between CESM2 model data, GAN-corrected 247 

outcomes, and observational datasets. Overall, CESM2 displays a substantial warming 248 

bias when compared to the four SST datasets. There is a distinct dipole bias in SSTs in 249 

the North Atlantic, particularly along the Gulf Stream and North Atlantic Current, 250 

where warm and cold biases coexist in proximity. A similar dipole bias is observed in 251 

the Southern Ocean at mid to high latitudes. Notably, prominent warm biases are 252 

noticeable near eastern boundary upwelling regions, encompassing areas close to 253 

California, South America, and Africa (Figs. 3a, 3c, 3e, and 3g). These biases are likely 254 
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associated with discrepancies in wind stress patterns within these regions and the spatial 255 

resolution of the model (Capotondi et al., 2020). Additionally, a significant warm bias 256 

is evident in the tropical Pacific. This warm bias is distinct from the well-known cold 257 

tongue bias observed in most CMIP5 models and even differs from CESM1, signifying 258 

disparities between CESM2 and its predecessors, as also acknowledged in previous 259 

CESM2 assessment studies (e.g., Capotondi et al., 2020). 260 

 261 

Figure 4 The disparities between climatological annual mean SSTs in (a) CESM2 262 

simulations, (b) QM-corrected SST, and NCEP. 263 

After the correction by the CycleGAN, there is a substantial reduction in the bias 264 

in the climatological SSTs (Figs. 2b, 2d, 2f, and 2h). The dipole bias in the North 265 

Atlantic and the Southern Hemisphere are notably reduced. Only minor cold biases 266 

persist in the vicinity of eastern Africa and the east of New Zealand. Furthermore, warm 267 

biases in the tropical Pacific are significantly attenuated. The overall bias diminishes 268 

from 1.25°C (1.19°C to 1.28°C) in CESM2 to 0.52°C (0.4°C 0.57°C). Through a 269 
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comparative analysis involving four sets of SST data, we find that the biases in both 270 

magnitude and spatial pattern are highly consistent across the different datasets. This 271 

robust agreement underscores the reliability of our evaluation. In addition, CycleGAN 272 

exhibits clear advantages over traditional methods. We compare its performance with 273 

the widely utilized approach, modified QM (Themeßl et al., 2011; Bai et al., 2016), 274 

widely employed for the correction of historical simulations and future projections 275 

within CMIP. When applied to SST correction, modified QM yields an error of 0.6, 276 

which is inferior to the results obtained by CycleGAN (Fig. 4). It is noteworthy that the 277 

performance of QM and CycleGAN is remarkably close in tropical regions, and in the 278 

North Pacific, QM even outperforms the latter. However, QM exhibits larger errors in 279 

the high-latitude regions of the Southern Ocean. 280 

The errors calculated based on the NCEP data align closely with those from other 281 

datasets, further affirming the suitability of this dataset for model training. Given the 282 

substantial convergence in results across three SST datasets (HadISST, ERSST, 283 

OISST), for the sake of brevity, we will exclusively employ HadISST as the 284 

observational reference in the subsequent sections. 285 

3.2 The bias in interannual variability 286 

 287 

Figure 5 ENSO-related SSTA in (a) observation, (b) CESM2, (c) QM, and (d) CycleGAN. 288 

Stippling indicates where the regressions are significant at the 95% confidence level, based on 289 

the student’s t-test. The hatched areas represent significant differences in El Niño composite 290 

SSTs within the CycleGAN-corrected fields compared to CESM2. The black contour line 291 

denotes +0.2K in observations. 292 
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In addition to addressing biases at the climatological scale, an essential aspect of 293 

climate model correction, and perhaps even more crucial, is the capability to simulate 294 

interannual dynamical variability such as ENSO and IOD. The accurate representation 295 

of these variabilities directly influences the ability to capture global and regional 296 

climate variability. Figure 5 displays DJF ENSO SSTA, in observations, CESM2, and 297 

CycleGAN-corrected SSTs. Notably, CESM2 exhibits an excessive westward bias in 298 

the equatorial Pacific, with a pronounced warm bias in the equatorial western Pacific. 299 

This bias is well-known and prevalent in many models, constituting a common bias in 300 

most CMIP5 and CMIP6 models (Tao et al., 2015; Tao et al., 2018; Tao et al., 2019; 301 

Jiang et al., 2021). It is worth noting that this substantial warm bias in ENSO SSTA can 302 

be primarily attributed to the climatological cold tongue bias (Li and Xie, 2012; 2014; 303 

Jiang et al., 2021). The cold tongue bias manifests as a phenomenon in the model 304 

simulation, signifying that the climatological annual mean Sea Surface Temperature 305 

(SST) in the central-eastern tropical Pacific is colder than observed. This is 306 

characterized by an excessively strong and westward-extending cold tongue in the 307 

equatorial Pacific. The presence of the cold tongue bias can influence SSTA in this 308 

region through its impact on temperature advection and other related processes. Despite 309 

the warm bias in the western Pacific in CESM2, its climatology also exhibits a warm 310 

bias. This suggests that the warm bias in the western Pacific of CESM2 may be 311 

attributed to other mechanisms.  312 

The modified QM method exhibits limited efficacy in the correction of ENSO SST. 313 

Its RMSE and PCC closely align with CESM2, and is ineffective in addressing 314 

distributional biases, such as excessive westward bias (Fig. 5c). After correction by the 315 

CycleGAN, in the equatorial western Pacific, the warm bias is greatly diminished, with 316 

its intensity comparable to observations. Furthermore, the warm bias in the central and 317 

eastern Pacific, as observed in CESM2, is also notably reduced. A significance test was 318 

performed for composite El Niño SSTs, revealing significant differences between 319 

CESM2 and the CycleGAN-corrected results in several regions, including the 320 

equatorial western Pacific, the equatorial sides of the central Pacific, and the tropical 321 

eastern Pacific (Fig. 5d). This indicates a statistically reliable improvement by the 322 
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CycleGAN in addressing warm biases in CESM2. Overall, upon applying the 323 

correction, we observe a significant reduction in the excessive westward bias of ENSO 324 

SST variability, with the distribution closely resembling observations. The RMSE 325 

decreases from 0.14 in CESM2 to 0.06, and the PCC increases from 0.89 to 0.95, 326 

corresponding to a 57% reduction and a 6.7% improvement, respectively. 327 

 328 

 329 

Figure 6 (Left) The standard deviation of SST and (b) the IOD-related SSTA during SON in 330 

(a, e) observation, (b, f) CESM2, (c, g) QM, and (d, h) CycleGAN, respectively. Stippling 331 

indicates the regressions are significant at the 95% confidence level, based on the student’s t-332 

test. The hatched areas represent significant differences in positive IOD composite SSTs 333 

within the CycleGAN compared to CESM2. 334 

Figure 6 shows the standard deviation of SSTs in the Indian Ocean and the IOD 335 

SSTA. In the CESM2 simulation, there is a significant overestimation of variability in 336 

the southeastern and western equatorial Indian Ocean, with the center of variability 337 
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extending too far westward in the southeastern Indian Ocean when compared to 338 

observations. Similar to its limited efficacy in ENSO correction, the modified QM 339 

method demonstrates constrained effectiveness in the correction of SST variability. 340 

While the CycleGAN markedly reduces the bias in the southeastern and western 341 

equatorial Indian Ocean compared to CESM2, and the excessive westward extension is 342 

substantially attenuated. The IOD mode exhibits bias like the standard deviation of 343 

SSTs (Fig. 6f). In CESM2, the IOD SSTA in the southeastern Indian Ocean is 344 

significantly stronger and extends too far westward compared to observations. In 345 

observations, negative anomalies roughly extend to 85°E, while in CESM2, the 346 

negative anomaly extends to around 70°E. CycleGAN successfully reduces this bias, 347 

with the negative anomaly located east of 80°E, significantly closer to observations, the 348 

performance is noticeably superior to modified QM, with the latter making only 349 

marginal adjustments to the intensity of SSTA. The RMSE decreases substantially 350 

compared to CESM2, from 0.34 to 0.21, while the PCC increases from 0.82 to 0.92. 351 

3.3 The bias in SST extremes  352 

 353 

 354 

Figure 7 As Fig. 5, but for the 95th percentile of SSTA. 355 
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In addition to interannual dynamical variability, a recent focus in oceanic research 356 

is marine heatwaves. Frequent marine heatwaves have significant impacts on marine 357 

ecosystems, particularly on marine fisheries and coral reefs (Oliver et al., 2017; Oliver 358 

et al., 2018; Holbrook et al., 2019; Oliver et al., 2021; Liu et al., 2022; Liu et al., 2023). 359 

We primarily use the 95th percentile of daily SSTA to quantify SST extremes and 360 

evaluate the performance of CESM2 and the GAN-correction in representing them. To 361 

conduct the evaluation, we utilized NCEP data spanning from 1991 to 2014 for testing. 362 

Figure 7 illustrates the 95th percentile of NCEP, CESM2, and CycleGAN-corrected 363 

SSTA, respectively. In the NCEP data, regions with high values of the 95th percentile 364 

are concentrated in the western boundary current extension regions, the central and 365 

eastern equatorial Pacific, and the northeast Pacific Ocean, consistent with previous 366 

studies (Chen et al., 2014; Echevin et al., 2018; Oliver et al., 2017; Oliver et al., 2021). 367 

When compared to NCEP, the spatial distribution of the 95th percentile in CESM2 is 368 

generally similar. However, CESM2 significantly overestimates the intensity of 369 

extreme SSTA in the central and eastern tropical Pacific while underestimating it in the 370 

northwest Pacific. In contrast, CycleGAN-corrected extreme SSTA shows better 371 

agreement with observations in terms of intensity and spatial distribution. The PCC 372 

improves from 0.56 to 0.88, and the RMSE decreases from 0.5 to 0.32, slightly 373 

outperforming those obtained with modified QM. 374 

Particularly noteworthy is the significant reduction of the overestimation bias in 375 

the central and eastern tropical Pacific and the enhancement in the underestimation in 376 

the northeast Pacific, making CycleGAN's results more consistent with NCEP. Figures 377 

8 and 9 present probability density functions (PDFs) of SSTA in the tropical (-5°S-5°N) 378 

and northeast (40°N~60°N; 180~120°W) Pacific, respectively. On average, CESM2 379 

exhibits a wider distribution in the tropics, indicating a stronger variability. CESM2 has 380 

a 95th percentile of 1.41 degrees for the tropical region, while NCEP only has 1.18 381 

degrees, resulting in a 19.5% overestimation. This aligns with the earlier result of the 382 

overestimation of SSTA in the tropical region, especially in the central and eastern 383 

Pacific (Fig. 7). After correction, the distribution of SSTA in the tropics closely matches 384 
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observations, with 95th percentiles of approximately 1.17, indicating a substantial 385 

reduction in the overestimation bias of CESM2 in the tropics. A similar situation is 386 

observed in the northeast Pacific. In this area, SSTA distribution in CESM2 is overall 387 

narrower than observations, indicating a lower variability. Correspondingly, its 95th 388 

percentile is lower than that of NCEP. After correction, the distribution and the 95th 389 

percentile of SSTA are much closer to NCEP. 390 

 391 

Figure 8 PDFs of average tropical SSTA for (a) NCEP and CESM2, and (b) NCEP and 392 

CycleGAN. Shading indicates areas where the SSTA is above the 90th percentile. 393 

 394 

Figure 9 As Fig. 8, but for the Northeast Pacific SSTA. 395 
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 396 

Figure 10 Standard deviations of (left) interannual DJF SSTA and (right) SSTA filtered by a 397 

band of 2–90 days in (a, d) NCEP, (b, e) CESM2, and (c, f) CycleGAN, respectively. 398 

Unlike methods such as modified QM that directly adjust data by quantiles to make 399 

the local distribution closer to observations, the CycleGAN learns and transforms high-400 

dimensional data features. An important question naturally arises: which key processes 401 

does CycleGAN capture that result in the improvement in simulating SST extremes? 402 

To address this question, we further performed an analysis of variability at various time 403 

scales, involving interannual variability and frequency exceeding 90 day-1 (encompass 404 

Madden-Julian Oscillation (MJO), Intraseasonal Oscillation (ISO), and synoptic-scale 405 

eddies). Figure 10a presents the interannual standard deviation of DJF SSTs based on 406 

observations. It primarily exhibits an ENSO-like pattern in the equatorial central and 407 

eastern Pacific. Moreover, notable high-variability regions are evident in the Northeast 408 

Pacific, North Pacific, mid-latitudes in the South Pacific, and adjacent to western 409 

boundary currents. In general, the spatial distribution of SST interannual variability in 410 
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observations closely resembles the distribution of the 95th percentile of SSTA (shown 411 

in Fig. 7), indicating the direct influence of interannual variability, especially ENSO, 412 

on extreme SSTs as in previous studies (Doi et al., 2015; Oliver et al., 2021). 413 

Additionally, ENSO can induce SST variations in the Northeast Pacific and North 414 

Atlantic regions by exciting Rossby wave trains (Wang et al., 2021; 2023; Wang et al., 415 

2022), further influencing extreme events in those areas (Johnson and Kosaka, 2016; 416 

Trenberth et al., 1998). When compared to observations, CESM2 exhibits an overall 417 

overestimation of interannual variability, particularly pronounced in the central-eastern 418 

Pacific. This overestimation is likely related to the higher ENSO variability within 419 

CESM2 (Capotondi et al., 2020). The consistency of the stronger interannual variability 420 

in the tropical central-eastern Pacific and the larger bias of extreme SSTA in Fig. 7 421 

suggest that the overestimation of interannual variability is a key factor contributing to 422 

the high bias in extremes in CESM2. In contrast to CESM2, SST fields corrected by 423 

the CycleGAN show a substantial reduction in the error in interannual variability, with 424 

the RMSE decreasing from 0.31 to 0.1. CycleGAN-corrected results exhibit a closer 425 

match to observations in terms of intensity, particularly in the tropical Pacific, South 426 

Pacific, Atlantic, and Indian Ocean. While the intensity in the tropical central-eastern 427 

Pacific remains higher than observed, notable improvements are observed compared to 428 

CESM2, consistent with the enhancement seen in extreme SSTA for this region in Fig. 429 

7. Concerning intraseasonal and synoptic-scale variability, the variability in NCEP is 430 

predominantly concentrated in the tropical Pacific and western boundary current 431 

regions (Fig. 10d), likely associated with boundary currents and active mesoscale eddy 432 

activity (Oliver et al., 2021). CESM2 simulations generally underestimate variability 433 

at these scales (Fig. 10e). In contrast, CycleGAN-corrected SSTs exhibit substantial 434 

improvements, especially in the Northeast Pacific, where the distribution is in closer 435 

agreement with NCEP (Fig. 10f). In summary, the CycleGAN demonstrates significant 436 

improvements in SST variability at different time scales, facilitating more accurate 437 

simulation of the complex oceanic dynamic processes, particularly regarding 438 

interannual variability and variability at intraseasonal and synoptic scales. 439 

4 Conclusion and Discussion  440 
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In this study, we employed CycleGAN to correct the daily SSTs from CESM2 441 

historical simulations. We conducted a comprehensive assessment of this model, 442 

considering various aspects such as climatology, interannual variability, and extremes. 443 

Our findings reveal significant improvements across these evaluation dimensions. At 444 

the climatological scale, the CycleGAN substantially reduced bias in annual mean 445 

climatological SST. Specifically, there is a 58% reduction in RMSE relative to CESM2, 446 

from 1.25 (1.19~1.28) degrees in CESM2 to 0.52 (0.4~0.57) degrees. At the interannual 447 

scale, involving two primary tropical modes, ENSO and IOD, we observe significant 448 

enhancements in simulating these modes with the CycleGAN. For ENSO SSTA, the 449 

RMSE decreases from 0.14 to 0.06, corresponding to a 57% reduction. CycleGAN 450 

effectively addresses a common bias of ENSO SST found in many climate models, 451 

known as the excessive westward bias in the equatorial Pacific that traditional methods, 452 

like quantile mapping, struggle to rectify. In the case of IOD, CESM2 tends to produce 453 

excessively strong and westward-extending anomalies in the southeastern Indian Ocean. 454 

After the correction, these biases are substantially reduced, resulting in an increased 455 

PCC of up to 0.92. 456 

Moreover, we investigate the performance in simulating SST extremes. The 457 

CycleGAN corrects the overestimation in extremes in most regions and addresses the 458 

underestimation in the Northeast Pacific. The improved performance of the CycleGAN 459 

in simulating the distribution of SSTA and extremes can be attributed to its ability to 460 

capture different temporal scales of variability, including interannual variability and 461 

variability at intraseasonal and synoptic scales, encompassing periods shorter than 90 462 

days. 463 

In summary, our study demonstrates that the CycleGAN offers comprehensive 464 

enhancements across various time scales and physical processes. Its utility extends 465 

beyond merely correcting specific statistical measures such as first and second-order 466 

moments locally; it also enhances the simulation of critical air-sea coupling modes like 467 

ENSO and IOD. These findings underscore the significant potential of CycleGAN as a 468 

valuable tool for climate model correction and climate projection. 469 

We employ NCEP data for the evaluation of SST extremes. It is crucial to highlight 470 
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the potential inconsistency among various observational datasets at the daily time scale, 471 

particularly in oceanic data. Consequently, it is essential to clarify that the presented 472 

results regarding SST extremes should be interpreted as an assessment of the capacity 473 

of CycleGAN to enhance the simulation of SST extremes rather than its precision in 474 

replicating observations. Achieving the latter would demand a more extensive dataset, 475 

particularly observational station data. 476 

 Moreover, it is crucial to acknowledge that, beyond the correction of historical 477 

simulations, the central consideration is the adaptability of these methods to future 478 

projections. Recent studies, exemplified by Hess et al. (2022), suggest that CycleGAN, 479 

through post-processing or incorporating constraints like global mean values, can 480 

reproduce trend signals under global warming. Further research is needed to refine the 481 

capability in capturing regional-scale warming responses. Subsequent investigations 482 

should also involve the development of correction datasets encompassing multiple 483 

models and variables, accompanied by a comprehensive analysis of physical 484 

mechanisms and laws in the corrected data. Comparisons with methods integrated with 485 

climate models, such as surface flux adjustments, should be explored. Furthermore, the 486 

direct coupling of the proposed correction method with climate models represents a 487 

critical avenue for future inquiry. 488 

  489 
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