
1. Introduction
Precipitation has significant impacts on socio-economy and our daily life (Konapala et al., 2020; Lesk et al., 2016; 
Trenberth et al., 2003). Extremely heavy rainfall usually leads to disasters such as floods, landslides, and mud-rock 
flow, which threaten people's lives (O’Gorman, 2015; Westra et al., 2014). As a result, accurate precipitation 
forecast is urgently needed (Clark et al., 2016; Ding et al., 2020). However, the mainstream numerical weather 
prediction (NWP) models are not precise enough due to their inherent defects in the approximation of dynamic 
and physical processes (Bauer et al., 2015). Statistical modeling approaches, which can either post-process NWP 
output or directly forecast precipitation, are often used to avoid these drawbacks (Wilks, 2009).

In recent times, there has been an exponential growth in deep learning (DL) technology, a data-driven method 
that has proven successful in meteorological and climatological forecasting and prediction (e.g., Bi et al., 2022; 
Ham et al., 2019; Liu et al., 2023; Pathak et al., 2022; Ravuri et al., 2021; Zhang et al., 2023). In contrast to 
NWP, DL models do not explicitly include atmospheric dynamics, which may impact their performance and 
application prospects (Reichstein et al., 2019). Notably, DL models may struggle with the predictions for heavy 
rainfall events. The use of conditional generative models is an effective approach for improving heavy rainfall 
predictions, especially in nowcasting (Hess et al., 2022; Ravuri et al., 2021; Zhang et al., 2023). Furthermore, 
DL models may not comply with important physical coupling (Han et al., 2020) and hinder precipitation predic-
tion. In such situations, DL models informed by physical priors may prove beneficial (Karniadakis et al., 2021; 
Kashinath et al., 2021).
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Emerging Graph neural network (GNN) algorithms have shown promise in addressing these challenges (Kipf & 
Welling, 2017; Scarselli et al., 2009; Veličković et al., 2018). GNNs are designed to process graph-structured data 
and can effectively learn the evolution of a node of interest (NoI) by considering its neighboring nodes, making 
them a powerful tool for modeling complex interactions and imposing constraints on DL models. For example, 
Wu et al. (2021, 2022) utilized GNN to construct the spatial relation between rain gauges and forecast the rainfall 
in the East of China. Li et al.  (2023) demonstrated the spatial interaction of observation stations in heatwave 
events. Other than spatial structure, GNNs can also be applied to represent the coupling of physical variables such 
as air-sea interaction (e.g., Mu et al., 2021).

In this study, we propose a novel approach called the GNN-coupled (ω-GNN) model that forecasts precipita-
tion, which considers the coupling relationship of meteorological elements based on the omega equation and 
moist equation. Through comparison with several other DL models trained and validated by the same data set 
under identical conditions, we found that the ω-GNN model considering physical couplings significantly outper-
forms the models that do not incorporate physical processes, leading to an improved performance in precipitation 
forecasting.

This study is structured as follows: Section 2 introduces the data used in this study. Section 3 is a methodology, 
including the construction of the model. In Section  4, we show our experimental results. Finally, we give a 
conclusion and discussion in Section 5.

2. Data
2.1. Data Sets

The ECMWF-IFS prediction serves as input data for this study. We select the following six variables consid-
ering the omega equation and moist equation: total precipitation, temperature, u-wind, v-wind, geopotential 
height, and relative humidity. The latter five parameters are at 500 hPa. Total precipitation has been converted 
to 6h-accumulated precipitation and graded into five levels based on the following thresholds: 0.1  mm/6h, 
2.5 mm/6h, 10 mm/6h, and 20 mm/6h. In this study, we utilize the ECMWF Reanalysis v5 (ERA-5; Hersbach 
et al., 2023) data set and the merged precipitation observations, known as Climate Prediction Center Morphing 
Technique and gauge observations (CMPA, Version 2.0; Shen et  al.,  2014) as the precipitation labels. Our 
primary focus lies in the comparative analysis of various DL models, with a specific emphasis on validating the 
superiority of a physics-informed DL model. Despite the known bias in China (e.g., Qin et al., 2021), we opt to 
employ the ERA-5 precipitation data due to its advantageous attributes of high temporal and spatial resolution, 
as well as extensive spatial coverage. To assess the model's generalization and its applicability to observational 
data, additional testing conducted using CMPA data. To embed the climatological impacts on the synoptic-scale 
transient eddies, Monthly Oceanic Niño Index (ONI) from the Climate Prediction Center (CPC) is also employed 
to represent the ENSO phase. The spatial domain selected for our analysis encompasses the region between 15°N 
and 54.75°N latitude and 70°E to 134.75°E longitude, which specifically targets precipitation data over the land 
area of China (atmospheric conditions above oceans are also included in the experiments, but not presented). The 
spatial resolution is interpolated to 0.25° × 0.25°, resulting in a 160 × 260 image for each atmospheric variable.

The experiments are implemented on the data during 2018/01–2022/05, containing 16,032 instances. For training 
and testing our ω-GNN model, the data set is divided into three parts: training data set (2018/01–2020/11) with 8364 
instances; validation data set (2020/11–2021/07) with 3,648 instances; and testing data set (2021/07–2022/05) 
with 4,020 instances.

3. Methods
3.1. GNN Model

3.1.1. Graph Formulation

Graph is a data structure composed of nodes and edges which connect node pairs. In practice, each node can 
represent an entity, and edges reflect some kind of relationship between these entities. A graph can be concretized 
and pictured like Figure S1a in Supporting Information S1 and represented as an adjacency matrix in calculation. 
To capture the coupling between physical variables through GNNs, we need to formulate a graph based on the 
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structure of physics. Precipitation is influenced by two critical physical factors: ascending motion and relative 
humidity of the troposphere. Ascending motion can be described by ω-equation (Dai & Nie, 2020; Holton & 
Hakim, 2013):

(

𝜕𝜕pp +
𝜎𝜎

𝑓𝑓 2
▽2

)

𝜔𝜔 = −
1

𝑓𝑓
𝜕𝜕𝑝𝑝(Adv𝜁𝜁 ) −

𝑅𝑅

𝑝𝑝𝑓𝑓 2
▽2Adv𝑇𝑇 . (1)

This equation implies that ascending motion, horizontal wind, air temperature, and pressure influence and deter-
mine each other in little air mass (Hu et al., 2018; Nie & Sobel, 2016). Then ascending motion will directly make 
for precipitation. At the same time, only saturated vapor can condense into rainfall. We first select variables 
following omega equation and moist equation and capture relationships present at these equations by a graph. 
Thus, Figure S1b in Supporting Information  S1 shows the structure of the physical process in precipitation. 
This graph contains six atmospheric elements (physical variables) represented as nodes, with edges reflecting a 
fuzzy kind of relationship distilled from physical laws. The use of this graph ensures the exchange of information 
between the elements at either end of an edge in the algorithm of GNNs.

3.1.2. Model Architecture

The ω-GNN model is an end-to-end 5-classification model, directly taking atmospheric elements as input and 
producing a predictive precipitation level as output. Figure 1a sketches the model architecture, which comprises three 
consecutive parts: an encoder, a ChebNet coupler, and a decoder (Grönquist et al., 2021; Ronneberger et al., 2015). 
For each atmospheric variable, the encoder has several Conv2D and MaxPooling layers that extract the spatial features 
at different levels and compress the 160 × 260 (Height, Width) fields into 8 × 13 × 128 (Height, Width, Channel) 
arrays (Figure 1b). These arrays are concatenated to form a 6 × (8 × 13 × 128) matrix, where each row vector corre-
sponds to an atmospheric element. This matrix will be sent to the ChebNet coupler, which aggregates the elements 
following the graph shown in Figure S1b in Supporting Information S1 in spectral domain. It maps a graph (spatial 
domain) to spectral domain and filters the graph. The filter is a learnable parameter, which reflects the mode of node 
interaction. In the end, the decoder will take out the corresponding row vector of precipitation from the output matrix 
of the ChebNet coupler and raise its dimension to a 160 × 260 predictive field through the super-resolution technique 
of PixelShuffle (Figure 1d) (Shi et al., 2016). This can be described mathematically as a function:

𝑃𝑃pred = 𝐹𝐹 (𝐸𝐸NWP;𝐺𝐺(𝜀𝜀); Θ) (2)

where F is the ω-GNN model, ε represents the variables involved in precipitation process and the graph relation-
ship between them, G represents graph neural network (GNN), and G(ε) reflects the non-linear aggregation of the 
variables through GNN according to their graph relationship. Θ is the set of trainable and non-trainable params, 
and ENWP is the input of model F, which contains six components:

𝐸𝐸NWP = (𝑃𝑃NWP, 𝑇𝑇NWP, 𝑢𝑢NWP, 𝑣𝑣NWP, ℎNWP, rhNWP). (3)

precipitation, temperature, u-wind, v-wind, geopotential height, and relative humidity obtained from the ECMWF-
IFS. For sophisticated decoding, skip-connections are employed to provide a hierarchy of detailed information 
from encoder to decoder (Han et al., 2021; He et al., 2015).

The ChebNet coupler is the critical part to realize the coupling of atmospheric elements. Essentially its algorithm  is

𝑌𝑌 =
∑𝐾𝐾

𝑘𝑘=0
𝑇𝑇𝑘𝑘

(

�̃�𝐿
)

𝑋𝑋𝑋𝑋𝑘𝑘 (4)

where 𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴 ∈ ℝ
6×(8×13×128) and 𝐴𝐴 𝐴𝐴𝑘𝑘 ∈ ℝ

(8×13×128)×(8×13×128) in this study. Tk is the kth-order term of the Chebyshev 
polynomial, and 𝐴𝐴 �̃�𝐿 ∈ ℝ

6×6 is the normalized Laplace matrix of the graph used in the ChebNet. Noticing that every 
128 elements in each row of X and Y can be traced back to the same region (see Figure 1c), we make a hypothesis 
that the coupling of variables takes place locally:

𝑌𝑌 =
∑𝐾𝐾

𝑘𝑘=0
𝑇𝑇𝑘𝑘

(

�̃�𝐿
)(

𝑥𝑥1𝑤𝑤1

𝑘𝑘
‖. . .‖𝑥𝑥8×13𝑤𝑤8×13

𝑘𝑘

)

 (5)

where 𝐴𝐴 𝐴𝐴𝑛𝑛 ∈ ℝ
6×128 , 𝐴𝐴 𝐴𝐴𝑛𝑛

𝑘𝑘
∈ ℝ

128×128 and 𝐴𝐴 ‖ means concatenation. It is reasonable because there is few impact at 
a distance in physics. This hypothesis helps us reduce the size of the model by O(10 2) and the computational 
complexity by O(10 4) while retain a high model performance.
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The ChebNet theory (and other spectral-based GNN theories) assumes an undirected graph (Chen et al., 2020; 
Wang & Zhang, 2022). However, the weight on each edge is difficult to determine from the complex relationship 
of ω-equation. Therefore, we assume that the weights on the edges are all equal to 1, and instead, we design 
a self-attention mechanism in our model, which multiplies each element by a weight before it is sent into the 
coupler (Vaswani et al., 2017). The weights are calculated as:

𝛼𝛼𝑛𝑛 = softmax
(

(tanh((𝑥𝑥𝑛𝑛 ⊙ 𝐴𝐴 ⋅ 𝑥𝑥𝑛𝑛)𝑤𝑤𝑛𝑛 + 𝑏𝑏𝑛𝑛))𝑤𝑤′𝑛𝑛 + 𝑏𝑏′
𝑛𝑛
)

. (6)

According to the coupler, the weight 𝐴𝐴 𝐴𝐴𝑛𝑛 ∈ ℝ
6 is local too, where n means the nth region. A is the adjacency matrix 

of the graph, so A · x n is the sum of all the connected nodes toward a NoI. ⊙ is Hadamard product. This set of 
weights guarantees that the weight for each atmospheric element has considered all its relationships with other 
elements. The data put into the coupler are:

𝑥𝑥𝑛𝑛 = 𝛼𝛼𝑛𝑛 ⊙ 𝑥𝑥𝑛𝑛. (7)

Figure 1. (a) A general diagram of the ɷ-GNN model. (b) The details of the encoder and the embedding for each atmospheric element; n is the dimension of the 
embedding vector for the climatological background. (c) The details of the locality hypothesis, take one element for example, (in reality there are 6). (d) The details of 
the decoder. Red represents the corresponding row vector of precipitation.
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3.2. Climatological Background Embedding

In addition to considering the physical process of precipitation, incorporating the climatological background 
state as prior knowledge is crucial in DL models due to its impacts on synoptic-scale transient eddies (Barsugli 
et al., 1999; Lau et al., 2005; Wang et al., 2021, 2022). In this study, we place particular emphasis on seasonality 
and ENSO phases since the data set covers 4∼5 years (Diaz et al., 2001; Rasmusson et al., 1990). We employ 
entity embedding to prompt the model to distinguish climatological and other sparse factors including lead time 
and valid time (Figure 1b). The embedding model is referred to as the ω-EGNN model, to discriminate from the 
ω-GNN model without embedding.

3.3. Experiment Setting and Training

To assess the performance of the GNN model, we initially compare it with NWP (the ECMWF-IFS). Subse-
quently, to analyze the feature fusion effects of GNN, we compare it with other deep learning models, including 
a U-NET model and a 3D-CNN model (CNN-3D), which performs feature fusion through convolution across 
different variables. We employ a 5-depth U-Net, which is now popular in weather forecasts, and the CNN-3D 
model is the same as the ω-GNN model except for a Conv3D coupler. Additionally, to assess the effectiveness of 
embedding climatological information, we compared ω-GNN and ω-EGNN.

All the DL models are trained for 100 epochs, using dice loss, a widely used loss function for imbalanced data 
(Jadon, 2020; Sudre et al., 2017):

Dice =
2 × 𝑇𝑇𝑇𝑇 + 𝜀𝜀

2 × 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝜀𝜀
 (8)

where TP means True Positive, FP means False Positive, FN means False Negative and ε is a small number. 
Since dice loss is based on binary classification, we see the 5-classification results of our experiments as 4 
binary classifications and calculate their average. We repeat training 10 times for each DL model as perturbation 
experiments. The optimization algorithm used for the model is Adam, with a batch size of 16, and each model a 
trained for 100 epochs.

Threat score (TS), false alarm rate (FAR), probability of detection (POD), and bias score (BS) are adopted to 
evaluate predictive performance:

TS =
TP

TP + FP + FN

 

FAR =
FP

TP + FP

 

POD =
TP

TP + FN

 

BS =
TP + FP

TP + FN

 (9)

among which TS and POD are the higher the better, FAR is the low the better and BS is the closer to 1 the better.

4. Results
4.1. Model Performance

Table S1 and Figures  2a–2d present the scores of each model. From a TS perspective, all four DL models 
show significant improvement over the NWP.  Among the DL models, the GNN family of models (ω-GNN 
and ω-EGNN) exhibits notable superiority over others. It is worth noting that at lower thresholds (0.1 mm/6h 
and 2.5 mm/6h), the advantage of the GNN family over other DL models is relatively small. However, as the 
threshold increases, particularly for heavy precipitation events, the advantage of the GNN family becomes more 
pronounced. For instance, at a threshold of 20 mm/6h, ω-GNN outperforms U-Net and CNN-3D by 7.64% and 
13.53%, respectively, while ω-EGNN shows even higher improvements of 9.44% and 15.43% over these models. 
These results demonstrate the superior performance of the GNN family of models, especially in capturing heavy 
precipitation events.
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Figure 2. Comparison of NWP, U-Net, CNN-3D, ω-GNN and ω-EGNN in (a) TS, the higher the better. (b) FAR, the low the better. (c) POD, the higher the better. 
(d) BS, the closer to 1 (the dashed gray line) the better. The colored bars display the mean of multiple trainings while the error bars show the standard deviation. X 
axis unit: mm/6h. And the distribution of TS difference between (e) ω-GNN and NWP, (f) ω-GNN and U-Net, (g) ω-GNN and CNN-3D, (h) ω-EGNN and NWP, (i) 
ω-EGNN and U-Net and (j) ω-EGNN and CNN-3D on the threshold of 20 mm/6h. The blank areas derive from the denominator of zero when calculating the TS, due to 
all the samples on the grids being TN (Ture Negative, which means no precipitation at this level).
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In addition to the TS metric, other quantities have been calculated for thorough evaluation. Similar patterns as 
that in TS are observed across these metrics. Specifically, at thresholds of 0.1 mm/6h and 2.5 mm/6h, ω-GNN and 
ω-EGNN show slightly better POD scores compared to U-Net and CNN-3D. At higher thresholds of 10 mm/6h 
and 20 mm/6h, ω-GNN exhibits improvements of 15.07% and 20.33%, respectively, over U-Net and CNN-3D, 
while ω-EGNN shows improvements of 13.19% and 18.36%. Similar results could be found in FAR and BS 
scores. These results highlight the stronger capabilities of the GNN family models, especially in accurately iden-
tifying heavy precipitation events. Furthermore, the results of ω-GNN and ω-EGNN have a smaller uncertainty in 
almost all circumstances, implying that these models are more robust compared to other DL models.

The above results naturally raise a question: Can the GNN family of models maintain their aforementioned advan-
tages when facing unequal modeling conditions, such as scenarios where other models have access to additional 
inputs? To try to answer this question, another U-Net model (hereafter U-Net+), using more variables additional 
to before, including t2m, surface pressure, surface relative humidity, land-sea mask, lake cover, high and low 
vegetation cover, and altitude, is trained for comparison. Even though U-Net + absorbs more data than ω-GNN 
and ω-EGNN, the findings still hold (Table S1 and Figure S2 in Supporting Information S1). This suggests that 
even when compared to models using more input data, GNN models may still have certain advantages. The extent 
to which this advantage can be maintained remains unknown.

Figures 2e–2j present the distributions of TS difference with the threshold of 20 mm/6h between GNN family 
models and other models. For most areas in the northeast, east, and middle of China, TS gets improved. 
Conversely, a reduction in TS is noted in the southern regions of China when compared to alternative models. 
Additional depictions of TS differences at various thresholds are included in the in Supporting Information S1 as 
Figures S3–S5. When precipitation is small, the forecasting performance of GNN models closely aligns with that 
of other DL models, and they outperform NWP almost nationwide. However, as precipitation intensifies (e.g., 
10 mm/6h), the regions where GNN models exhibit a relative improvement over NWP models closely resemble 
the results with a 20 mm/6h threshold. Figure S6 in Supporting Information S1 displays the TS scores at various 
thresholds with increasing lead times. Across all lead times and precipitation ranges, DL models consistently 
outperform the NWP, albeit with a diminishing advantage as the lead time increases. However, as the threshold 
surpasses 20 mm/6h, the performance gap between DL models and the NWP narrows, and most DL models' 
advantage becomes less significant around lead times of approximately 20 hr. In contrast, the GNN family of 
models continues to exhibit superior and robust TS scores, significantly outperforming the NWP model, corrob-
orating the results presented in Table S1 in Supporting Information S1. It is essential to acknowledge an increase 
in TS scores observed from 6 to 12 hr, a phenomenon also documented in previous studies (e.g., Tjernström 
et al., 2021). This phenomenon may be linked to the inherent complexity of precipitation, and the underlying 
causes remain yet to be fully understood.

Case studies are conducted to verify the practical prediction performance. Figure 3 and Figure S7 in Support-
ing Information  S1 show three cases of 12hr forecast of 2021/08/29/00:00 (Figures  3a), 18hr forecast of 
2021/08/26/18:00 (Figure 3b), and 30hr forecast of 2021/07/30/06:00 (Figure S7 in Supporting Information S1), 
respectively. In the first case, the heavy rainfall (red area) has a shape of oblong ellipse from the northeast to 
the southwest in the middle of the box. The result of NWP has a false rainfall center to the southwest of the true 
heavy rainfall, while U-Net and CNN-3D predict a much smaller area of heavy rainfall than ground truth. These 
errors are corrected by ω-GNN and ω-EGNN, as they predict a heavy rainfall area with a similar shape and size to 
ground truth and no false heavy rainfall center. In the second case, there are two rainfall centers around (93.0°E, 
27.5°N) and (94.5°E, 28.0°N). U-Net and CNN-3D only predict one rainfall center. NWP captures both the two 
centers, but the west center is much smaller than the ground truth. The results of the GNN family are close to 
NWP but improve the size of the west center. These two cases demonstrate the ability of GNN family models 
to identify and predict heavy rain, which corresponds to their high TS in Section 4.1. In the last case, there are 
three third-level rainfall centers in the middle, south, and east of the box, respectively. However, NWP, U-Net, 
and CNN-3D overestimate the intensity of these centers as fourth-level. The GNN family models, especially the 
ω-EGNN, can eliminate these false alarms, which reduces the FAR of them.

4.2. Effect of Climatological Background Embedding

Guo and Berkhahn (2016) claimed that entity-embedding vectors possess realistic meaning in terms of distance 
and direction. To investigate the relationship between synoptic-scale precipitation and climatological background, 
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we reduce the dimension of the learned embedding vectors of seasonality and ENSO phase to 2D using principal 
component analysis, as shown in Figure S11 in Supporting Information S1. These vectors have been appropri-
ately normalized for analysis.

Figures S11a and S11b in Supporting Information  S1 depict two typical structures of seasonal embedding 
obtained from multiple sensitivity experiments. The first structure demonstrates a clear separation of the four 
seasons into distinct quadrants, while the second structure shows closer proximity between two seasons, such 
as winter, spring, or autumn. Overall, all winter, spring, and autumn precipitation patterns remain distinct from 
those of summer. These findings support the notion of seasonal differences from a predictive perspective and are 
consistent with different prediction errors between summer and winter (Figures S10c and S10d in Supporting 
Information S1).

Moreover, the embedding vectors representing different ENSO phases exhibit a more distinctive pattern (Figures 
S11e and S11f in Supporting Information S1), consistently forming a shape approximating an equilateral triangle 
in multiple training instances. This suggests that various ENSO phases have a profound impact on synoptic-scale 
precipitation over China, consequently resulting in systematic variations in forecast errors across different ENSO 
phases (e.g., Figure S11g and S11h in Supporting Information S1).

4.3. Generalization Capability Across Observational Data Set

The preceding research has highlighted the advantages of GNN models when applied to reanalysis data sets. This 
raises an intriguing question: how does this model perform when applied to observational data? To address this 
question, we conducted a tesing and analysis using CMPA data set. Due to variations in data sources between 

Figure 3. NWP and DL model predictions for (a) case 2021/08/22/00:00, 12hr-lead time, (b) 2021/08/26/18:00, 18hr-lead time. Shading represents the predicted 
precipitation levels. In the case of DL models, the shading corresponds to the highest probability precipitation level among the 10 ensembles. The numerical values 
indicate the count of forecasts predicting intense precipitation (level 4) among the 10 ensembles. Specifically, ‘A' denotes that all 10 ensembles forecast intense 
precipitation.
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domestic and international regions within the CMPA data set, our modeling and validation efforts are primarily 
focused on inland regions within 30°E−40°E, 105°N-115°N. The temporal domain and division of training, vali-
dation and test data sets are the same as Section 2.1.

As illustrated in Figure 4a, models within the GNN family consistently demonstrate significant superiority across 
all precipitation categories when compared to NWP. Of particular note is the performance of the GNN model, 
which performs comparably to U-NET for precipitation levels below 20 mm while significantly outperforming 
the 3D-CNN model. Most notably, for precipitation levels exceeding 20 mm, the GNN family of models exhibits 
a substantial advantage over other models. This underscores the exceptional performance of the designed GNN 
model when applied to observational data, particularly for intense precipitation events exceeding 20 mm. The 
difference between TS distributions of two models on 20 mm/6h have also been presented in Figures 4b–4g. In 
comparison to other models, the GNN models exhibit a noticeable enhancement in most regions. When compared 
to different models, there are some variations in the distribution of TS differences. This suggests that different 
models may capture distinct features, leading to differences in TS distribution.

5. Conclusion
In this study, we propose GNN-based ω-GNN and ω-EGNN models to forecast the precipitation of China. The 
ω-GNN model carries a constraint of atmospheric coupling inspired by omega and water vapor equations, and the 
ω-EGNN model additionally contains sparse factors like climatological background based on the ω-GNN model. 
To enhance computational efficiency, we transition from global to localized calculations in the GNN considering 
the characteristics of precipitation. This adjustment significantly reduces computational complexity while main-
taining comparable performance.

These two models show significant improvements in the forecast skill of heavy rainfall compared to NWP and 
other non-physics-informed DL models under identical circumstances. Specifically, their prediction attains 
pronounced higher TS than other models, especially for thresholds greater than 10 mm/6h, and this advantage is 
maintained at every lead time within 72 hr, which means a better identification of heavy rainfall. The false alarm 
rate of the GNN family models is also lower than other models, indicating that they can reduce overestimating 
rainfall intensity. Furthermore, via multiple perturbation experiments, it becomes evident that the predictions 
generated by the GNN family models demonstrate reduced uncertainty when juxtaposed with those from other 
deep learning models. This implies that the GNN family models are more reliable and easier to train. These 
results imply that the two physics-informed GNN models can mitigate the negative effects of imbalanced data, 

Figure 4. (a) Comparison of NWP, U-Net, CNN-3D, ω-GNN and ω-EGNN in TS, the higher the better. The colored bars display the mean of multiple trainings 
while the error bars show the standard deviation. X axis unit: mm/6h. And the distribution of TS difference between (b) ω-GNN and NWP, (c) ω-GNN and U-Net, (d) 
ω-GNN and CNN-3D, (e) ω-EGNN and NWP, (f) ω-EGNN and U-Net and (g) ω-EGNN and CNN-3D on the threshold of 20 mm/6h. The blank areas derive from the 
denominator of zero when calculating the TS, due to all the samples on the grids being TN (True Negative, which means no precipitation at this level).
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such as precipitation, on traditional DL models. Additionally, by introducing entity embedding, ω-EGNN excels 
in short-term predictions, while ω-GNN demonstrates greater proficiency in long-term forecasting.

The interpretability of the ω-GNN and ω-EGNN models are also analyzed. The embedding vectors of season 
display that all winter, spring, and autumn precipitation patterns remain distinct from those of summer, unveil-
ing the seasonal difference of prediction. The embedding vectors also exhibit distinct variations in precipitation 
between different ENSO phases. These findings are consistent with the different forecast errors and highlight the 
importance of considering climatology background in synoptic prediction and correction. The physics-informed 
GNN models can enhance not only the performance but also the interpretability.

Our analysis is conducted using both ERA5 data and CMPA data as ground truth. ERA5 data exhibits better 
physical consistency with ECMWF forecasts, boasts higher spatial and temporal resolutions, and is more read-
ily accessible. These characteristics simplify the training of DL models and enable direct model comparisons. 
CMPA data provides an excellent representation of hourly precipitation in China, enabling us to evaluate fore-
casting capability for observed precipitation. Our GNN-family models demonstrate superior performance on both 
data sets, highlighting their excellent generalization capabilities across different data sets and their suitability for 
observed precipitation. The construction of graphs based on the omega equation, the localized modification of 
ChebNet, and the utilization of embeddings, including their integration, dimensionality reduction, and compar-
ison with climate diagnostics, can provide valuable insights for related research. Subsequent research endeavors 
should involve the utilization of observational data, such as station data, and more related variables, such as 
topography to conduct further evaluations of these models and to delve into potential enhancements in precipi-
tation forecasting.
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