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The primary factors influencing the cooling effect of carbon
dioxide removal
Xia Qu 1,2 and Gang Huang 1,3,4✉

Carbon dioxide removal (CDR) is a crucial approach in achieving the goals set by the Paris Climate Agreement. However,
understanding the cooling effect (CE) of CDR and its primary controlling factors has been challenging due to the limited number of
models conducting the CDR simulation. To address this, we employed an energy balance model (EBM), which effectively captures or
reproduces the global mean surface air temperature change to CO2 forcing. The outputs of the EBM revealed that even with the
same CDR rate, the CE diverse significantly (σ ¼ 0:7K ). Two main factors significantly affect the CE of CDR. The primary factor is the
coefficient of the vertical heat exchange in the ocean [contributes to σ CEð Þ ¼ 0:7K ], which governs the heat uptake and release of
the deep ocean. It directly impacts the heat absorbed by the Earth’s surface and influences the magnitudes of the transient climate
responses. The second factor is the estimation of effective radiative forcing (ERF) resulting from changes in CO2 concentration
[contributes to σ CEð Þ ¼ 0:6K ]. This estimation is directly associated with the amplitude of the CO2 radiative forcing and the
responses of relevant energy processes, thereby influencing the temperature change. Regarding the timing of the CE emergence, the
influences of processes within the EBM are quite small. Therefore, an accurate estimation of the vertical heat exchange in the ocean
and ERF may favor designation of a better pathway to achieve the temperature goals outlined in the Paris Climate Agreement.
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INTRODUCTION
The global mean surface air temperature change (ΔT ) is an
important metric of climate change. The ΔT brings about vast
consequences, such as changes in the hydrological cycle1–5,
clouds6–8, radiative fluxes3,6,8,9, sea levels10,11, sea ice11–13, carbon
emissions6,14, as well as regional climate15,16. To mitigate climate
change, the United Nations Framework Convention on Climate
Change proposed the Paris Climate Agreement to limit the global
temperature increase below 2 °C and pursued efforts to limit it to
1.5 °C. According to estimations, the achievement of the goals in this
century requires CDR17–21. It may interest us how the CE of CDR is
implicated in the reversal of climate change; it is tightly associated
with the stress regarding the realization of temperature goals.
If CDR is applied after the increase in CO2 concentration, the ΔT

exhibits hysteresis: it continues to rise for several years and then
decreases; it cannot return to zero when the CO2 concentration
recovers to an unperturbed level4,11,14,22,23. To date, it has been
reported that the CDR rate, equilibrium climate sensitivity (ECS)
and ocean heat uptake may alter the hysteresis of the ΔT14.
However, it is still unclear which factors are relatively important to
the CE of CDR.
Most of the literature on the impacts of CDR is based on

simulations of complex models, such as coupled general
circulation models (CGCMs) and Earth system models (ESMs).
Due to the great computational expense, investigations on CDR
are mainly based on a single or few models6,10,11,14,24. This, to
some extent, has hindered the understanding of the effects of
some climatic properties on the behavior of the ΔT under CDR. For
example, it is difficult to modulate the parameters associated with
ocean processes. Recently, the Carbon Dioxide Removal Model
Intercomparison Project (CDRMIP)17 has been sponsored as a

contribution to Coupled Model Intercomparison Project phase 6
(CMIP6)25. Within the project, although 8 models are used to
conduct 1pctCO2-cdr simulations (in which the CO2 concentration
declines) and the climatic properties of the models differ, it is still
inadequate to discuss the effect of one climatic property while
isolating the others.
The forcing and response energy budget framework may

expand the understanding. To seek a straightforward under-
standing of the ΔT , the Intergovernmental Panel on Climate
Change (IPCC) proposed the forcing and response energy budget
framework26–28. It is expressed as follows:

ΔN ¼ F � λΔT (1)

where ΔN is the net incoming radiative flux at the top of the
atmosphere (TOA), F is the ERF and λ is the climate feedback
parameter (net radiative flux feedback to the TOA per ΔT ).
Conventionally, if the CO2 concentration is 2 times the preindustrial
level and the climate reaches equilibrium, the 4T equates to the
ECS (but for convenience, the present analysis uses 4 times the
preindustrial concentration). To evaluate the transient response, the
IPCC further introduced a two-layer EBM28–32, which is an
accredited tool in the translation of ECS to transient climate
response28. Because of its small computational cost, the framework
provides an opportunity to expand the understanding of the effects
of each climatic property while isolating the effects of others.

RESULTS
Reproducibility of the EBM
Based on the outputs of 45 models in CMIP6, the EBM parameters
were calibrated. Then, each CMIP6 model was applied to yield a
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surrogate EBM. The parameters are calibrated based on data from
year 1–150 of Abrupt 4×CO2 simulation and year 1–140 of 1pctCO2
simulation; the results of EBMs in year 141–280 are predictions.
The EBM captures the ΔT evolutions under CO2 forcing well.
In the Abrupt 4×CO2 simulation, the ΔT in CMIP6 models are all

captured by their surrogate EBMs. In the simulation, the CO2

concentration abruptly quadruples relative to the preindustrial
level and is then held fixed. The ΔT in both the CMIP6 and EBM
results rises dramatically and then increases at a slower rate
(Supplementary Fig. 1); if compared individually, the two kinds of
results are nearly identical. Taken the ΔT in year 150 for example,
the individual results in the CMIP6 and EBM is well coincident (Fig.
1a).
In the 1pctCO2 simulation, most of the surrogate EBMs captures

the ΔT evolution in CMIP6 results. The ΔT evolution of both the
CMIP6 models and their surrogate EBMs displays the same ramp-
up feature and nearly all the surrogate EBMs fit the ΔT evolution
of their CMIP6 models well (Supplementary Fig. 2). When the
increase in the CO2 concentration ceases in year 140 (Fig. 2a), the
ΔT in most CMIP6 models and their surrogate EBMs are nearly
identical (Fig. 1b). The exception is CESM2, GISS-E2-1-G and KACE-
1-0-G (Fig. 1b and Supplementary Fig. 2). For CESM2, the
mismatch in temperature in year 140 is possibly because the
model may not fulfil our conditions of the ERF-CO2 relationship
(Eq. 6). GISS-E2-1-G displays an unusual plateau in the ΔT after 82
years (Supplementary Fig. 2). In KACE-1-0-G, the initial global
mean surface air temperature is ~1 K cooler than the end of
preindustrial simulation; it does not satisfy the protocol that 1
pctCO2 simulation initiates from the end of preindustrial simula-
tion25. So GISS-E2-1-G and KACE-1-0-G are excluded in the
subsequent analysis.
For the 1pctCO2-cdr simulation, only 8 models are available.

Since the 1pctCO2-cdr simulation is the extension of the 1pctCO2
simulation, the CE of CDR is defined as the temperature difference
between the end of 1pctCO2 simulation (year 140 in Fig. 2a) and
that of 1pctCO2-cdr simulation (the year 280 in Fig. 2a).
Considering the interference of climatic internal variability, six
surrogate EBMs (ACCESS-ESM1-5, CNRM-ESM2-1, CanESM5, GFDL-
ESM4, MIROC-ES2L and UKESM1-0-LL) reasonably reproduce the
CE, all with errors and less than their climatic internal variability

(Fig. 1c and Supplementary Fig. 2 and Supplementary Table 2 in
Supplementary Information). Two surrogate EBMs (CESM2 and
NorESM2-LM) underestimate the CE (Fig. 1c and Supplementary
Table 2). For CESM2, similar to the situation in the 1pctCO2
simulation, the difference in CE is possibly due to a mismatch of
the ERF-CO2 relationship. For NorESM2-LM, the ΔT evolution
during years 141–280 is nearly symmetric to that during years
1–140, which is an “unusual” behavior which does not match the
ΔT behavior when the CO2 concentration drops as described in
previous literature4,6,11,14,22,23,33. Despite the “unusual” behaviors
and climatic internal variabilities, the surrogate EBMs are able to
reproduce the CE in CMIP6 models under the application of CDR.
As the EBM contains the simplified energetic processes

associated with the ΔT , its good reproducibility in the aforemen-
tioned scenarios instills confidence its ability to study the effects
of climatic properties on the CE of CDR. Together with the low
computational cost of the EBM, the present analysis conducted
391 EBM simulation ensembles (see “Methods” section for more
information) with varying climatic properties, greatly augmenting
the sample size to supplement 1pctCO2-cdr simulations, which
only comprise 8 available models.

The CE of CDR
Under CDR conditions, the ΔT is affected by the accumulation of
the ERF if the CO2 concentration increases before the CDR is
applied. Considering this, the EBMs are driven by the idealized
evolution of CO2 concentration below: during years 1–140, it
increases 1% per year; during 141–280, the pathway mirrors that
of years 1–140 (Fig. 2a). This favors the acquisition of data with a
high signal-to-noise ratio. The evolution of the ΔT discussed in the
following is based on the outputs of EBMs under such a pathway.
As changes in parameters affect the CE of CDR, the present

analysis conducted single parameter sensitive simulations to
investigate the effects of the parameters in the EBM (see
“Methods”). The evolution of the ΔT is displayed in Fig. 2. Overall,
the ΔT increases with the CO2 concentration from year 1 to 140; it
decreases as the CO2 concentration declines from year 141 to 280;
when the CO2 concentration recovers to preindustrial level, the ΔT
cannot fall back to 0. The ΔT varies as the parameters alter.

Fig. 1 The reproducibility of the ΔT in EBMs. The scatterplot of the ΔT (unit: K) in EBM (x axis) and CMIP6 (y axis). In (a), the results are the ΔT
in year 150 in Abrupt-4×CO2 simulations. In (b), the results are the change in year 140 in 1pctCO2 simulations. In (c), the results are the CE of
CDR in 1pctCO2-cdr simulations; the CE is defined as the ΔT differences between the ends of 1pctCO2 simulations and 1pctCO2-cdr simulations.
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The averages and diversities of CDR CE in the single parameter
sensitive simulation, as well as the reconstructed simulations, are
displayed in Fig. 3a. In the reconstructed results, the averaged CE of
CDR is 3.5 K with a standard deviation of 0.7 K.
The leading factor affecting the CE is the coefficient of the

vertical heat exchange in the ocean (parameter γ). The sole
change in γ leads to a CE of CDR with an average of 3.5 K and a
standard deviation of 0.7 K, which is almost identical to the
reconstructed results (Fig. 3a). This parameter means that under
the same temperature difference between the Earth’s surface and
the deep ocean, a higher parameter yields higher heat exchange
between the two. For instance, if the Earth’s surface is warmer
than the deep ocean, more heat is loss from the former to latter,
resulting in smaller temperature gap between the two layers and

smaller temperature response of the Earth’s surface; if the Earth’s
surface is cooling and the deep ocean is warmer than it, it receives
more heat from the deep ocean, also leading to a smaller
temperature gap between the two layers and a less cooling rate of
the Earth’s surface.
Inferred from the magnitudes of the net energy gained by the

Earth’s surface (Cd ΔTð Þ=dt; Figs 4g and 5a, b), before year 200, Eqs.
(4) and (6) in “Methods” can be expressed as:

F � λΔT � εH � 0 (2)

This equation indicates that the ERF is approximately balanced
by heat transfer from the Earth’s surface to the deep ocean and
radiation feedback to the TOA.
When the CO2 concentration increases, the Earth’s surface receives

energy due to CO2 forcing, resulting in warming (Fig. 4a, d). Since the
deep ocean has a much larger heat capacity than the Earth’s surface
(Supplementary Table 1), the surface warms faster than the deep
ocean (Fig. 4c). A portion of the injected energy flows into the deep
ocean (Fig. 4f), through advection, diffusion and mixing34; while the
rest primarily feedbacks to the TOA (Fig. 4e). If only γ varies, a higher
γ value leads to more heat being transferred from the Earth’s surface
to the deep ocean (higher εH), resulting in a lower efficiency of ERF in
the warming of the Earth’s surface (Fig. 5a). This is accompanied by a
larger-warmed deep ocean, a less-warmed Earth’s surface and a
smaller temperature difference between the two layers. Conse-
quently, the 4T in year 140 is smaller (Fig. 4a, b, f).
After year 140 but before the temperature gap between the

Earth’s surface and the deep ocean disappears, higher γ values
lead to slower decrease in the ΔT . During this period, although the
ERF is decreasing, it is still the primary forcing (Fig. 5b). Similar to
the period from years 1–140, the injected energy is partially
transferred to the deep ocean and partially returned to the TOA.
With higher γ values, more energy is transferred to the deep
ocean, resulting in lower efficiency in driving changes in the ΔT
(Eqs. 2 and 3 and Fig. 5b); consequently, when the ERF declines,
the ΔT drops at a slower pace (Fig. 4a, d). Furthermore, if γ is
higher, the rate of the ΔT decrease must be slower to maintain a
consistent relationship between net energy budget and the ΔT
change (refer to Supplementary Discussion in Supplementary
Information).
As year 280 approaches, the CO2 forcing is nearly vanished, and

the warmed Earth surface emits outgoing radiative fluxes,
contributing to a cooling to itself (Fig. 4a, e, d). Since the deep
ocean is warmer than the Earth’s surface, it provides heat to the
surface (Fig. 4c, f). As the derivative of Cd ΔTð Þ=dt is small in this

Fig. 2 The evolution of atmospheric CO2 concentration and ΔT. The evolved CO2 concentration (a; unit: ppm) is the forcing of the single
parameter sensitive and reconstructed simulations. The time serials of ΔT (units: K) are the results of single parameter sensitive simulations.
b–h demonstrates the results of the set of EBM simulations in which one parameter (indicated above each panel) was varied while the other
parameters were set as multimodel averages; the colors of the curves from light to dark represent the varied parameters from small to large.
The x-axis denotes the year.

Fig. 3 The average and diversity of the CE features resulting from
individual and all parameters. The error plots of the features of the
ΔT under CDR scenarios in EBMs. For each of the 7 leftmost
parameters on the x-axis, the corresponding box represents the
span of the ΔT feature in the single parameter sensitive simulations;
“Rec” represents the results of the reconstructed simulations. The
dots are averaged results; the top and bottom lines of the error bars
indicate the ±1 intermodel standard deviation, respectively. The
features include the CE of CDR (a; unit: K) and the lag when cooling
emerges after year 140 (b).
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period (Fig. 5d), the derivative of both sides of Eq. (4) against t
yields:

F0 � λΔT 0 � εH0 � 0 (3)

That means that the rate of the decline ERF is balanced by the
rates of climate feedback and energy loss from Earth’s surface to
deep ocean.
Higher γ values tend to result in more dramatic changes in the

heat exchange between the deep ocean and the Earth’s surface;
when approaching 280, it leads to a higher �εH0 (Fig. 5d).
According to Eq. (3) and with F0 being fixed in all ensembles (Fig.
5d), the ΔT 0 must be higher to maintain the balance of F0, �λΔT 0

and �εH0. Given that the ΔT 0 is negative, its magnitude must be
small and the ΔT need to decrease at a slower rate (Fig. 4a).
Based on the above results, it is evident that higher coefficient

of the vertical exchange in the ocean results in a slower decrease
in ΔT in period of year 141-200 and years approaching 280,
indicating a lower CE of CDR. Conversely, a lower γ value
corresponds to a higher CE (Fig. 4a). This finding aligns with Ehlert
and Zickfeld10, suggesting that enhanced vertical mixing results in
a lower CE. The out-of-phase relationship of the ΔT between year
140 and 280 is not observed in other single parameter sensitive
simulations (Fig. 2), further supporting the notion that the
coefficient of the vertical heat exchange in the ocean to be the
primary factor influencing the CE of CDR.
Simply speaking, the deep ocean acts as a “reservoir” of heat,

wherein an increase in the CO2 concentration coupled with a
higher γ leads to a faster injection of heat into the “reservoir”. This
results in a less-warmed Earth’s surface and a larger amount of
heat being restored by the deep ocean. Conversely, when the CO2

concentration is close to vanishing, the “reservoir” releases heat to
prevent excessive cooling of the Earth’s surface.
The estimation of ERF due to CO2 concentration change (F4×)

plays a secondary role in the CE variability. In the single parameter
sensitive simulation, the sole change in F4× yielded output with an
averaged CE of CDR of 3.4 K and standard deviation of 0.6 K (Fig.
3a). In this set of simulations, the timings of the processes, such as
the peak of the ΔT (year 144) and the transition of the deep ocean
from heat uptake to heat release (year 245-246), do not change;
the response amplitudes of the associated processes simply scale
with F4× (Fig. 6). Higher F4× leads to stronger ERF, hence the higher
temperature response of the earth surface and deep ocean, larger
temperature gap between the earth surface and deep ocean,
stronger vertical heat exchange in the ocean, more intensified
energy gained by the Earth’s surface when the CO2 concentration

increases, as well as more intensified energy lost by the earth
surface when the CO2 concentration decreases (Fig. 6). Thus,
higher F4× induces a relatively higher CE of CDR (Fig. 4a).
The individual contributions of the remaining parameters are

much smaller (Fig. 3a), and therefore, their roles are not discussed
here.

The timing of CE emergence
Another important aspect related to the CE of CDR is the timing of
the CE emergence (TOCEE). Previous studies have generally
agreed that if CDR is applied, the ΔT may peak several years
after the maximum CO2 concentration1,6,14,23,24. This implies that
the CE of CDR does not immediately emerge upon the initiation of
CDR. In this context, we defined the TOCEE the first year after 140
when the ΔT is lower than that in year 140. In the Reconstruct
simulations, the mean TOCEE is 13.6 years. If one is interested in
the CE during a period shorter than the entire CDR process, it is
crucial to understand this TOCEE: before the TOCEE, the CE is less
than zero, indicating a warming effect; only after TOCEE, the CE is
positive. The relationship between CE and CO2 concentration is
not strictly linear.
However, the influences of the parameters on the TOCEE are

minor. In the Reconstruct simulations, the TOCEE exhibits relatively
small diversity, with a standard deviation of 4.3 years (Fig. 3b). The
single parameter sensitive simulations, it is evident that the primary
factor affecting TOCEE is the heat capacity of the deep ocean (C0),
accounting for a standard deviation of 3.0 years. The diversity in
TOCEE is also influenced by the ECS, the coefficient of vertical heat
exchange in the ocean (γ) and the heat capacity of the Earth’s
surface (C), with standard deviations of 2.6, 2.6 and 2.1 years,
respectively. Considering the limited diversity in the TOCEE, the
role of the parameters is not extensively discussed in present
analysis.

DISCUSSION
The EMB results indicates that even under the same CDR pathway
(reducing CO2 concentration by 1% per year for 140 years to pre-
industrial level), the CE of CDR varies. Two factors primarily affect
the CE: the primary one is the coefficient of the vertical heat
exchange in the ocean and the second one is the estimation of
ERF to changes in CO2 concentration. Additionally, it is worth
noting that the CE does not manifest immediately after the
application of CDR; typically, it emerges approximately 14.3
years later.

Fig. 4 The evolution of temperature and energy fluxes when the coefficient of vertical heat exchange in the ocean changes. The time
serials in EBMs when the coefficient of vertical heat exchange in the ocean (γ) varies: ΔT (a; unit: K), temperature change in the deep ocean
(b; unit: K), changes in temperature differences between the Earth’s surface and the deep ocean (c; unit: K), ERF (d; unit: Wm−2), energy
feedback (�λΔT ; e; unit: Wm−2), energy loss of the Earth’s surface to the deep ocean (�εH; f; unit: Wm−2), and net energy gained by the
Earth’s surface (the sum of (c–e); g; unit: Wm−2). The colors of the curves from light to dark represent γ from small to large. The results are the
output of the single parameter sensitive simulations in which γ was varied and the other parameters were fixed.
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One implication of the findings concerns the coefficient of
vertical heat exchange in the ocean. The question is how to define
the depth of the boundary of the two layers. According to the
estimation method in Geoffroy, et al.29 and the mean heat
capacities of the Earth’s surface and deep ocean in Supplementary
Table 1 in the Supplementary Information, the depth of the upper
ocean is approximately 93 m, which roughly matches the previous
estimation of the mixed-layer depth35. Thus, if we accurately
estimate the vertical heat exchange coefficient between the
mixed layer and the layer below, there is a potential to make a
more precise projection of the CE of CDR.
The second implication concerns the estimation of ERF. Despite

substantial effort and progresses made in understanding the
relationship between ERF and changes in atmospheric CO2

concentration26,28,36,37, the ERF estimation still significantly affects
the CE of CDR. To minimize the uncertainty in CE projection, a
more accurate estimation of ERF is also required.
The third implication concerns the representativeness of model

outputs in the CDRMIP. If the outputs of 8 models in the CDRMIP
are used instead of outputs of the 43 CMIP6 models, the relative
contributions to the CE diversity vary due to differences in the
diversities of the parameters. Among the models participating in
CDRMIP, owing to the larger standard deviation of ε (0.36; 0.24 in
CMIP6 models; see Supplementary Table 3 in Supplementary
Information) and smaller standard deviation of γ (0.18 Wm−2 K−1;
0.33 Wm−2 K−1 in the CMIP6 models), ε contributes the most to
the diversity of CE, followed by γ (Supplementary Fig. 3 in
Supplementary Information). Therefore, when discussing the CE
diversity among the models, due to the inadequate sampling, the
current 8 models in the CDRMIP cannot fully represent the feature
exhibited by the 43 CMIP6 models.

In addition, one may concern the effect of the Atlantic meridional
overturning circulation (AMOC) on the vertical heat exchange in the
ocean. This concern arises from the following findings: (1) In
response to changes in CO2 concentration, the AMOC may undergo
a similar variation with slightly differences in phase38; (2) The AMOC
is an important heat conveyor in the redistribution of global
energy39. The relationship between the AMOC strength and the
vertical heat exchange in the ocean appears contradictory. Some
studies displayed that a stronger AMOC tends to delay global
warming40,41, as it leads to a more vigorous vertical heat exchange
in the ocean. On the other hand, a stronger decline in the AMOC
may lead to less global warming42–44, suggesting that a weaker
mean AMOC is associated with enhanced ocean heat uptake and
intensified vertical heat exchange. This contradiction is reconciled by
the explanation, proposed by He et al.45, that the base climate ocean
circulation, including the AMOC, is more influential, as it establishes
the basic state for transient climate responses. This reconfirms that
the fixed coefficient of vertical heat exchange in the EBM is able to
grasp the majority of changes in global temperature. However, it is
essential to keep in mind that the coefficient of vertical heat
transport in ocean is not constant. Compared with varying vertical
heat transport, present simplification may lead to slight differences
in ocean heat uptake, as well as the global climate response.

METHODS
CMIP6 dataset
The parameter calibration of the EBM and the performance
evaluation are based on CMIP6 simulations25, including (1)
preindustrial control simulation: the CO2 concentration in the
CGCMs or ESMs is held constant (284.7 ppm). The minimum

Fig. 5 The energy fluxes during three periods and the derivative of the fluxes during one period when the coefficient of vertical heat
exchange in the ocean changes. The averaged radiation fluxes in Single parameter sensitive simulations during three periods: a year 1–140, b year
141–200 and c year 261–280. d is the derivative of the fluxes during year 261–280. Red, blue, green and gray bars are ERF, radiation to deep ocean (
�εH), climate feedback (�λΔT ) and Cd ΔTð Þ=dt, respectively. The values from left to right in x-axis mean the γ is from large to small. Positive and
negative mean the Earth’s surface receiving and losing energy, respectively. The units of (a–c) are Wm−2, the one of (d) is Wm−2 year−1.
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number of simulation years is 500. (2) Abrupt 4×CO2 simulation:
the CO2 concentration in the CGCMs and ESMs is abruptly
quadrupled relative to the preindustrial level and then held
constant. The simulation is initiated from the end of the
preindustrial control simulation. The minimum number of simula-
tion years is 150. (3) 1pctCO2 simulation: starting from the
preindustrial level, the CO2 concentration in the CGCMs and ESMs
is increased 1% per year until it quadruples at year 140. Then, it is
held constant for 10 years. The simulation is initiated from the end
of the preindustrial control simulation. Only the outputs of the first
140 years are used in the present analysis. (4) 1pctCO2-cdr
simulation: starting from the level at the 140th year of the 1pctCO2
simulation, the CO2 concentration in the CGCMs and ESMs is
decreased 1% per year until it recovers to the preindustrial level.
Then, it is held constant17. The simulation is initiated from the
140th year of the 1pctCO2 simulation. The minimum number of
simulation years is 140. Only the outputs of the first 140 years are
used in the present analysis.
Forty-five models are used in the present analysis and are listed

in Supplementary Table 1 in the Supplementary Information. The
outputs of the preindustrial control, Abrupt 4×CO2 and 1pctCO2-cdr
simulations are all available. Only eight models (ACCESS-ESM1-5,
CESM2, CNRM-ESM2-1, CanESM5, GFDL-ESM4, MIROC-ES2L,
NorESM2-LM and UKESM1-0-LL) conducted the 1pctCO2-cdr
simulation and they were used in present analysis.

EBM and parameter calibration
The present analysis employed a two-layer EBM29–31 to analyze the
effects of climatic properties on the ΔT evolution under a CDR
pathway. The model splits the climate system into two layers: (1)
the Earth’s surface, including the atmosphere, the land surface, and
the upper ocean, and (2) the deep ocean. It includes some key
climatic processes, such as climate feedback, heat transfer between
the two layers, the heat capacity of the climate system, and the
efficacy of deep-ocean heat uptake. The equations of the EBM are

C
d ΔTð Þ
dt

¼ F � λΔT � εH (4)

C0
d ΔT0ð Þ

dt
¼ H (5)

H ¼ γ ΔT � ΔT0ð Þ (6)

In Eqs. (4)–(6), ΔT0 is the temperature change in the deep
ocean; F, λ, ε, γ, C, C0 and H are the ERF, climate feedback

parameter, efficacy factor of ocean heat uptake, heat exchange
coefficient between the two layers, heat capacity of the upper
layer, heat capacity of the deep ocean and energy obtained by
deep ocean, respectively. εH is the heat loss to deep ocean from
the Earth’s surface. The equivalent climate feedback is
λþ ε� 1ð ÞH=ΔT , serving a varying parameter of climate feedback.
The parameters are calibrated based on abrupt

4×CO2 simulations in CMIP6 using the method in Geoffroy
et al.30. Each model underwent 50 iterations to generation the
parameters:
(1) For first iteration, we set ε ¼ 1. The value of F, ECS and λ are

obtained by performing a linear regression of ΔN and ΔT , which
are CMIP6 outputs, following Eq. (1). To calibrate C, C0 and γ, we
introduce four parameters τf , τs, af and as. Using the following
equation:

ln 1� ΔT
ECS

� �
� ln as � t

τs
(7)

where the t is time. The linear regression of the left-hand side
against right-hand side over the period 30–150 yields as and τs.
Then, using:

af ¼ 1� as (8)

we can determine af . Using the averaging of first 10 years of
abrupt 4×CO2 simulations and following:

τf ¼ t

ln af � ln 1� ΔT
ECS � ase

� t
τs

� � (9)

we can calculate τf . To avoid division by 0, NorESM2-LM and
NorESM2-MM utilized the first 4 and 7 years, respectively. C, C0 and
γ can be calculated as follows:

C ¼ λ
af
τf
þ as

τs

(10)

C0 ¼ τs τf af þ τsasð Þ � C
ε

(11)

γ ¼ C0

τf as þ τsaf
(12)

Then, we can obtain the εH

Fig. 6 The evolution of temperature and energy fluxes when the estimation of ERF varies. The time serials of energy processes and
temperature change when F4× varies: the time series of the ΔT (a; unit: K), temperature change in the deep ocean (b; unit: K), changes in
temperature differences between the earth surface and the deep ocean (c; unit: K), ERF (d; unit: Wm−2), energy feedback (�λΔT ; e; unit:
Wm−2), energy loss of the earth surface to the deep ocean (�εH; f; unit: Wm−2) and net energy gained by the earth surface (the sum of (c–e);
g; unit: Wm−2). The colors of the curves from light to dark represent the F4× from small to large. The results are the output of the single
parameter sensitive simulations in which F4× was varied and the other parameters were fixed.
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(2) For iteration i (i � 2), the calculation process may be slightly
different. By adding Eqs. (4) to (5), we can obtain:

ΔN ¼ F � λΔT � ε� 1ð ÞH (13)

The multi-linear regression of ΔN against ΔT and H provided the
F, ECS, λ and ε. The value of H is derived from iteration (i−1). The
other steps remain the same as the first iteration.
Finally, 50 iterations yield the specific values of these

parameters, listed in Supplementary Table 1 of the Supplementary
Information.
The ERF, F, is a function of the CO2 concentration (CO2) and

satisfies32

F CO2ð Þ ¼ F4 ´ 1� fð Þ ln CO2ð Þ
ln 4 ´CO20ð Þ þ f

ln CO2ð Þ
ln 4 ´CO20ð Þ

� �2( )
(14)

In Eq. (14), f is the fraction of nonlog-linearity of the ERF. F4×
represents the ERF when the CO2 concentration is 4 times the
preindustrial level. CO20 is the CO2 concentration during the
preindustrial period. f is calibrated based on 1pctCO2 simulation
using the method described in Geoffroy and Saint-Martin31. To
evaluate f, we define:

x ¼ log4
CO2
CO20

� �
� 1 (15)

y ¼ 1

log4
CO2
CO20

h iΔN þ λΔT þ ε� 1ð ÞH
F4 ´

� 1 (16)

then, f is calculated as:

f ¼
P

t xyP
t x

2 (17)

Year 35-140 of 1pctCO2 simulation is utilized to minimize the
influence of noise. The calculation of f uses iteration. In the first
iteration, the H is set to zero; For iteration i (i � 2), the H is
determined based on the results of the iteration (i-1). 50 iterations
yield the f.
In Geoffroy and Saint-Martin31, there is another option in which

f is assigned as 0.09. For each model, we used the EBM to
reproduce the ΔT in the 1pctCO2 simulation based on the
calibrated f and assigned f. If the root mean square error relative
to that of the CMIP6 result was lower, the corresponding f was
adopted; otherwise, the assigned f was used. The parameter f is
listed in Supplementary Table 1 in Supplementary Information.

EBM Simulations
To study the effects of the parameters, the present analysis
conducted the following simulations: (1) Single parameter sensitive
simulation: To investigate the effects of the parameters in the
Eqs. (4)–(6) on the evolution of the ΔT , we changed one parameter
according to the calibrated parameters of the CMIP6 models and
set the other parameters as the mean of the CMIP6 models (The
parameters are listed in Supplementary Table 1 in Supplementary
Information; the parameters of GISS-E2-1-G and KACE-1-0-G are
not used due to incorrect setup). The EBM (Eqs. (4)–(6)) is forced
by the CO2 concentration pathway, that is, during years 1–140, it
uses the same concentration as that in the 1pctCO2 simulation;
during years 141–280, it uses the same concentration as that in
the 1pctCO2-cdr simulation (see Fig. 2a). The total ensemble
number is 301. (2) Reconstructed simulation: This simulation was
designed to evaluate the performance of the EBM and determine
the importance of the parameters. For each CMIP6 model, the
surrogate EBM uses its corresponding parameters in Supplemen-
tary Table 1 in Supplementary Information. The EBM is forced by
the CO2 concentration pathway, as in the single parameter sensitive

simulation. The total ensemble is 45. (3) Abrupt 4×CO2 recon-
structed simulation: This simulation was designed to evaluate the
reproducibility of the EBM for the Abrupt 4×CO2 simulation in
CMIP6. For each CMIP6 model, the surrogate EBM uses its
corresponding parameters in Supplementary Table 1 in Supple-
mentary Information. The EBM is forced by the CO2 concentration,
as in the Abrupt 4×CO2 simulation in CMIP6. The total
ensemble is 45.

DATA AVAILABILITY
The CMIP6 outputs are available online at https://esgf-node.llnl.gov/projects/cmip6/.
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