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Abstract: Although the Weather Research and Forecasting model with solar extensions (WRF-Solar) 

is tailed for solar energy applications, its official version lacks the consideration of the online aero-

sol-radiation process. To overcome this limitation, we have coupled the aerosol module online with 

the radiation module, then assimilated the high-resolution aerosol optical depth (AOD) from the 

Himawari-8 next-generation geostationary satellite using a three-dimensional variational (3DVAR) 

AOD data assimilation system to optimize the irradiance predictions with the better aerosol–radia-

tion interaction. The results show that data assimilation can significantly eliminate the AOD under-

estimations and reasonably reproduce the AOD temporal distributions, improving 51.63% for bi-

ases and 61.29% for correlation coefficients. Compared with the original WRF-Solar version, cou-

pled online with an advanced aerosol module minifies the bias value of global horizontal irradiance 

(GHI) up to 44.52%, and AOD data assimilation contributes to a further reduction of 17.43%. 
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1. Introduction 

Solar power is being used increasingly and exponentially as a kind of new and clean 

energy source and is expected to have a bright application prospect under the carbon-

neutral scenario to mitigate climate change in China affordably. To achieve the carbon-

neutral goal, photovoltaic power generation in China is expected to increase by 40% from 

the current 3.1% [1]. As a result, accurate forecasting of clear-sky solar power is becoming 

increasingly crucial to estimate the amount of energy available and the share of renewable 

sources in advance [2,3], particularly for clear-sky solar power prediction, during which 

sharing the most abundant solar energy. 

Global horizontal irradiance (GHI) is the first and one of the most essential variables 

in most solar power prediction systems [4]. There are two typical approaches for forecast-

ing solar irradiance [5,6]. One is statistical ways by using historical ground-based obser-

vations and satellite observations data with traditional mathematical models or updated 

machine learning techniques [7–10]. It saves calculation time but can only provide rela-

tively good results for a temporal range between 30 min and 6 h [11–13]. The other is the 

numerical weather prediction (NWP) method, which usually shows better performances 

from 4 to 6 h onward by considering the dynamic phenomenon and cloud microphysics 

[14–16]. Some recent studies have shown that NWP forecasts are more competitive than 
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satellite-based approaches to solar power forecasting, even on short time scales [4,17]. 

Typically, forecasts based on global, multiscale, and mesoscale NWP models are widely 

used and evaluated [15]. For example, the Global Environmental Multiscale (GEM) model 

[18], the European Center for Medium-Range Weather Forecasts [14], the Advanced Mul-

tiscale Regional Prediction System (ARPS) model [19], several versions of the Weather 

Research and Forecasting (WRF) model [20], and so on. Among them, by downscaling to 

a finer physical resolution realistically, mesoscale models have significant advantages in 

local forecast accuracy compared with global models [4,15,21,22]. 

The Weather Research and Forecasting model with solar extensions (WRF-Solar) is 

the first NWP model explicitly developed for solar power applications [23]. After improv-

ing the representation of the cloud–aerosol–radiation system [16,24] and incorporating a 

fast-radiative transfer algorithm [25], it is proved that GHI is improved by 46% on clear-

sky assessment compared with the standard WRF at all the surface radiation budget net-

work sites. 

However, results based on NWP such as WRF-Solar still have significant uncertain-

ties [26], which are caused by random and systematic errors and uncertainties when de-

scribing atmospheric conditions [6,27,28]. In addition, the prediction errors may come 

from a bad estimate of the initial and boundary conditions [29,30]. Boundary conditions 

can determine simulated aerosol effects on convective cloud fields [31] and the sensitivity 

of boundary layer dynamics in the model is highly related to initial meteorological condi-

tions [32]. In addition, the official version of WRF-Solar uses a prescribed climatology-

based aerosol parameterization in the radiation-related calculation [33,34], which is based 

on a model dataset [35]. Considering the rapid change in emissions, its 1975-average level 

may be far away from reality. Under clear skies, the aerosol-radiation interaction is the 

largest source of uncertainty in solar irradiance [23], especially in highly polluted areas 

[36] such as East and South Asia. Consequently, improving the AOD forecast under clear 

skies is essential for an effective and accurate solar prediction [37,38]. 

Aerosol data assimilation (DA) is a statistically optimal method to reduce the uncer-

tainty in the initial aerosol field [39,40]. With the development of large observing systems 

and remote sensing techniques, abundant data are becoming available these years. This 

provides promising prospects for improving model initial and boundary conditions 

through DA [29]. Among all the DA methods, three-dimensional variational (3DVAR) is 

one of the most prevailing approaches applied in AOD assimilation [41,42]. Meanwhile, 

remote sensing optical properties show a significant advantage in covering large space 

spans and vertical detailed aerosol information [43–45]. AOD data from Moderate Reso-

lution Imaging Spectroradiometer [43,45–47], Geostationary Ocean Color Imager and Vis-

ible Infrared Imaging Radiometer Suite [41], Cloud-Aerosol Lidar and Infrared Pathfinder 

Satellite Observations (CALIPSO) satellite [48] and Himawari-8 [42,49] have been assimi-

lated to WRF-Chem to improve AOD analyses and forecasts. At the same time, only radi-

ances from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) aboard the Me-

teosat Second Generation (MSG) geostationary satellite have been assimilated into WRF 

Solar by 3DVAR to reduce the mean bias error [2]. There is still lacking research focusing 

on the effects of AOD DA in Asia using geostationary instruments such as Himawari-8 in 

WRF-Solar. 

In this study, the chemistry aerosol module is firstly coupled online with the radia-

tion module in WRF-Solar (i.e., WRF-Chem-Solar) to calculate the surface solar radiation 

(SSR) with time changing aerosols. Then we implement a 3DVAR aerosol DA system with 

the WRF-Chem-Solar model using the Himawari-8 geostationary satellite AOD data. Our 

major objectives are to quantitate the sensitivity of SSR to the aerosol initial conditions 

(ICs) and then investigate its forecasting performance under clear skies in China. The pa-

per is organized as follows: Section 2 describes the WRF-Solar and its configurations as 

well as the data assimilation system. Section 3 reveals the satellite and observation da-

tasets and the experiment designs. Section 4 provides the results and the statistical analy-

sis. Section 5 draws conclusions. 
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2. Methodology 

2.1. Forecast Model 

In this study, the latest version of Weather Research and Forecasting model coupled 

with Chemistry (WRF-Chem v4.4) is applied to predict the SSR [50,51]. The model blends 

the advantages of the Multi-Sensor Advection Diffusion Nowcast (MADCast) [52,53] and 

WRF-Solar (i.e., MAD-WRF) [23] to achieve improved end-to-end solar irradiance fore-

casting. WRF-Solar is a specific configuration and augmentation of the WRF model. Com-

pared with the original WRF version, the WRF-Solar focuses on improving the represen-

tation of the cloud–aerosol–radiation system by providing new parameterizations. It also 

outputs the direct and diffuse components of the irradiance at high temporal resolution 

while keeping the computational cost low [25]. Then, the feedbacks between sub-grid 

scale clouds and shortwave irradiance are implemented in a shallow cumulus parameter-

ization [54]. All mentioned above contribute to the solar augmentations for solar forecast-

ing in the WRF model. 

In the frame of WRF-Solar, the effects of aerosol on the radiation simulation have 

been added only to the Goddard [55] and the Rapid Radiative Transfer Model for Global 

Circulation Models (RRTMG) [56] shortwave radiation schemes. However, the Goddard 

parameterization cannot output the clear-sky radiation at present; therefore, RRTMG is 

selected to simulate the SSR considering the aerosol-induced reduction with the predicted 

aerosols. The Goddard Global Ozone Chemistry Aerosol Radiation and Transport 

(GOCART) is adopted to predict the major tropospheric aerosol components and their 

direct effects on SSR (i.e., WRF-Chem-Solar). In GOCART aerosol model, fifteen prognos-

tic aerosol variables are used to predict the mass mixing ratios of the bulk sulfate, hydro-

phobic and hydrophilic organic carbon and black carbon (OC1, OC2, BC1, and BC2), other 

fine particulate matter (PM2.5), dust in five bins and sea salt in four bins. An improved 

bulk microphysics [57] combined with a scale-aware cumulus parameterization [58] is 

employed to explicitly predict the cloud water, rain, cloud ice, snow, and graupel. The 

major configurations are shown in Table 1, and the other configurations are as same as the 

earlier work [59]. The model is configured with a domain covering Eastern Asia with a 25 

km horizontal resolution and 45 vertical levels. The top of the model is located at 50 hPa. 

The domain is shown in Figure 1a. In the current study, only the anthropogenic sources 

of aerosols are considered by using the HTAPv3 mosaic emission inventory for the year 

2018 [60]. Considering the need for operational forecasts of air quality and SSR, the initial 

and lateral boundary meteorological fields are generated from the NCEP Global Forecast 

System (GFS). 

Table 1. Configurations of the model used in the study. 

Model Setting Description Reference 

Microphysics Thompson [57] 

Radiation RRTMG scheme for SW and LW [10,11] 

Land Surface Noah Land Surface Model [12] 

Cumulus Parameterization Grell–Freitas ensemble scheme [15] 

Aerosol module GOCART [60] 

Dust emission GOCART dust emissions [21] 
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Figure 1. (a) Map of study domain and distributions of the mean BC emissions in March 2018, the 

full disk scanning of Himawari-8 over the study domain is shown in the white line. (b) The zoning 

map of seven main electricity grids in China. 

2.2. Three-Dimensional Variational Data Assimilation 

For computational affordability in the operational application, the 3DVAR technique 

in Grid-point Statistical Interpolation (GSI v3.7) is used to improve the aerosol forecasting 

with the optimal aerosol initial conditions (ICs) by assimilating satellite observed AODs 

in this study [61,62]. 

Fundamentally, data assimilation finds the best estimate of the analysis as the ICs for 

the subsequent forecast by minimizing the following scalar cost function: 

  �(�) =
�

�
(� − ��)����(� − ��) +

�

�
[�(�) − �]����[�(�) − �],  (1)

where x and  ��  are vectors of analysis and forecast, respectively, which are the above-

mentioned prognostic aerosol variables over all model grids for this study; B and R are 

the background and observation error covariance matrices, which determine the relative 

contributions of the model forecast and observation terms to the final analysis; the non-

linear observation operator H maps the predicted aerosol mass mixing ratios to the satel-

lite observed AODs for this study. 

The GSI 3DVAR adopts an incremental implementation of the cost function J(x) as 

following formulas 

�(��) =
�

�
�������� +

�

�
[H�� − �]����[H�� − �], (2)

�� = � − ��, (3)

� = � − �(��), (4)

Where � is the nonlinear observation operator and H is the linearity of the observation 

operator in the vicinity of ��. By defining � = ����� and assuming �� = � = 0, the min-

imum of the cost function is found iteratively with a preconditioned conjugate gradient 

algorithm to solve both �� and � [61]. In practical application, the recursive filters in GSI 

avoid inverting the huge matrix � and require only the standard deviation and horizon-

tal and vertical length scales of the background error of the analysis variables [62]. In this 

study, the model named GENerate the Background Errors (GEN_BE) is applied to simu-

late the � with the differences of 12 and 24 h forecasts valid at the same time [63]. 
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3. Observations and Experimental Design 

3.1. Himawari-8 

Himawari-8 (H8) is a next-generation geostationary satellite located at 140.7°E over 

the equator, which takes an Advanced Himawari Imager (AHI) to observe aerosol and 

clouds over the Asia–Oceania region from 80°E to 160°W between 60°S to 60°N [64]. The 

AHI has six bands in visible to near-infrared wavelength ranges, providing an operational 

full-disk near-real time aerosol optical properties every 10 min [65,66]. The aerosol optical 

properties in the latest version 031 are retrieved with a newly developed algorithm with 

the assimilated aerosol forecast as an a priori estimate [66], leading to more accurate aer-

osol retrievals. In addition, a scheme based on spatiotemporal aerosol variability is devel-

oped to improve merged hourly estimates of AOD with strict cloud screenings and pro-

vide the maximum number of available AOD retrievals [67]. Its products have been eval-

uated with observed station results by earlier studies and show good performance [68–

70]. Taking advantage of the H8, we assimilate the AHI level 3 hourly merged AODs at 

500 nm to improve the aerosol and subsequent SSR forecast by correcting the initial aero-

sol conditions in this study. 

The officially public GSI 3DVAR aerosol assimilation system has the capacity to as-

similate the Moderate Resolution Imaging Spectroradiometer (MODIS) AODs at 550 nm 

[61]. We further extend the assimilation system to include the H8 hourly merged AODs 

at 500 nm, and the efficient aerosol optical module specifically developed for the 

GOCART based on the look-up table in the Community Radiative Transfer Model 

(CRTM) is severed as the nonlinear observation operator � and its tangent linear opera-

tor H. 

3.2. AERONET 

The Aerosol Robotic Network (AERONET) is a globally distributed ground-based 

network of automatic tracking sun and sky scanning radiometers [71]. The directly spec-

tral solar extinction measurements are used to retrieve the AODs at wavelengths of 340, 

380, 440, 500, 675, 870, 1020, and 1640 nm with high accuracy. The estimated uncertainties 

of the retrieved AODs are about 0.01–0.021, with slightly higher errors in the ultraviolet 

wavelengths. The cloud-screened and quality-controlled AERONET AODs with the latest 

version 3 retrieval algorithm are used to independently validate the improvement of the 

aerosol forecast by assimilating the H8 AODs [72]. 

As WRF-Chem only outputs the AODs at 300, 400, 550, and 999 nm calculated with 

the aerosol optical module based on Mie scattering theory, the AERONET AODs at 440 

and 675 nm are logarithmically interpolated to compare with the modeled ones at 550 nm. 

It is notable that the official version of WRF-Chem calculates the aerosol optical properties 

by assuming bi-modally lognormal size distributions of GOCART dry bulk sulfate and 

carbonaceous aerosols, and the mean diameters (geometric standard deviations) of the 

aitken and accumulation modes are 0.01 (1.7) and 0.07 (2.0), respectively. To be consistent 

with the size distributions assumed in the CRTM aerosol optical module, we modified the 

size distributions of sulfate and carbonaceous aerosols as mono-modally lognormal dis-

tributions. The mean diameters of the sulfate, BC, and OC are assigned as 0.139, 0.0236, 

and 0.0424 [73]. The simulated AODs are calculated with the WRF-Chem “aerosol chem-

istry to aerosol optical properties” module, which are the integral results of 8 sizes with 

dry-diameter ranges from 0.039 to 10 um. The details of the particle dry-diameter range 

for 8 size bins can be found in an earlier study [74]. Totally, 94 stations are used in this 

study. 

3.3. SONET 

The Sun–Sky Radiometer Observation Network (SONET) is a ground-based aerosol 

observation network providing columnar atmospheric aerosol properties in the long run 

in China [75]. A total of 20 long-term observation stations are providing key aerosol 
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parameters, including AOD, asymmetry factor, single scattering albedo, and Ångström 

exponent of aerosol particles within the entire atmospheric column. The multi-wave-

length polarized sun–sky radiometers CE318-DP are used to measure aerosol and water 

vapor at nine channels with center wavelengths of 340, 380, 440, 0.50, 670, 870, 1020, and 

1640 nm at every 15 min [75,76]. The average differences in AOD between the SONET and 

AERONET are only 0.002 [75]. Similar to AERONET AODs, the SONET AODs at 440 and 

675 nm are logarithmically interpolated to 550 nm. After quality control, 18 stations are 

used in this study. 

3.4. SSR Stations 

The hourly ground-based SSR data across China were available from the China Me-

teorological Administration (CMA), which contains data under the all-sky and clear-sky 

scenarios. After strict data quality control, such as the spike value test and homogeniza-

tion [77,78], 138 sites are used to verify the performance of the simulated clear-sky SSR. 

3.5. Experiments 

As summarized in Table 2, three numerical experiments are conducted in this study. 

A base experiment (OR) with the default WRF-Solar model (which has not been coupled 

online with chemistry) configuration is run from 8 to 22 March 2021 as a reference to eval-

uate the performance of the original WRF-Solar version in China and surrounding areas. 

A control experiment (FR) with a full chemistry aerosol model GOCART coupled with 

WRF-Solar is conducted to evaluate the effects of the time-varying aerosols on SSR simu-

lation. Similar to the FR experiment, an aerosol assimilation experiment (DA) is performed 

to correct the aerosol initial conditions every 24 h for evaluation of the effects of the 

Himawari-8 AOD assimilation on the hourly SSR simulation. All the experiments are con-

ducted with a cold start at 06:00 UTC every day to ingest the meteorological fields, 

whereas the aerosol initial conditions are from the 24 h forecasts on the previous day in 

the FR experiment and the optimal ones by assimilating the H8 AODs in the DA experi-

ment. The FR and DA experiments start from a clean atmosphere with a spin-up period 

of a week as the aerosol lifetime is generally less than one week. 

Table 2. Experimental design for the sensitivity tests in this study. 

 Version Chemistry Online Couple Data assimilation 

OR WRF-Solar - - - 

FR WRF-Chem-Solar √ √ - 

DA WRF-Chem-Solar-DA √ √ √ 

Statistical metrics, including the mean error (BIAS), the root mean square error 

(RMSE), the correlation coefficient (CORR), and the index of agreement (IOA), are calcu-

lated to reveal the model performance [79]. IOA is a dimensionless statistical measure of 

model performance as following:  

IOA=1-
∑ (Oi-Mi)

2N
i=1

∑ ��Oi-O��+�Mi-O���
2N

i=1

   (5)

where the Oi means the observations, the Mi means the model results, and the O�  gives 

the average values of observations. 

4. Results 

4.1. DA Impacts on Aerosol Spatial Column Distributions 

Due to the lack of aerosol simulation in OR experiment, only aerosol spatial column 

distributions in FR and DA experiments are analyzed here. Figure 2 shows the horizontal 

distributions of the simulated time-averaged AODs in the FR and DA experiments and 
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their differences (DA experiment minus FR experiment). For the FR experiment, high 

AOD values are found in Xinjiang province, central China, and South Asia, where human 

activities are frequent. At the same time, low AOD values below 0.05 are found over the 

Tibetan Plateau and neighboring areas where anthropogenic aerosol emissions are lim-

ited. As shown in Figures 2b and c, after DA, it is apparent that DA enlarges the AOD 

values over the human-active areas except for Northwest China, part of Southwest China, 

and part of Central and North Asia. There are significantly increasing AODs in South 

Asia, Southeast Asia, the North China Plain (NCP), and the southwest and southeast coast 

of China on land, with average values passing 0.32. In the DA experiment, the range of 

low-value centers becomes smaller and moves northwest, while a low-to-high shift (from 

about 0.70 to nearly 1.1) can be found in areas in South and Southeast Asia (Figure 2b). 

Similar results have been detected by earlier studies [80,81], which reveal that the ob-

served AODs higher than 0.7 are consistently examined over the heavily industrialized 

and densely populated regions of India, Bangladesh, and China in spring. The relatively 

non-obvious change (with an absolute value below 0.04) may result from the absence of 

observations of Himawari-8 to be assimilated over the west of 80°E, leading to a lack of 

assimilation data on the periphery of the measurement range. 

 

Figure 2. Spatial distributions of the mean simulated AOD in the (a) FR, (b) DA experiments, and 

(c) their difference (AOD in DA minus that in the FR experiment) from 8 to 22 March 2021. 

Then, the influences of DA on the spatial distributions of aerosol component burdens 

during a severe spring Eastern Asian dust event is analyzed. Figure 3 shows the spatial 

distributions of the daily mean values of the main individual aerosol component burdens 

(containing dust, sulfate aerosol, organic carbon (OC), and black carbon (BC)) on March 

16th in the FR and DA experiments, as well as their differences on that day. With obvious 

increasing dust from Northwest China, DA has contributed to an increasing dust value 

beyond 400 mg/m2 in NCP and Northwest China (Figure 3a–c). The noticeable increasing 

dust transport from South and Southeast Asia to South China can also be detected in DA 
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experiment. Concurrently, after DA, there are increased sulfate aerosol, OC, and BC over 

most parts of South and Southeast Asia and the adjacent seas, and reduced ones in most 

areas in East China. It should be mentioned that the reductions over East China in the DA 

experiment are dominated by the sulfate aerosol because of the significant reductions of 

the SO2 due to China’s clean air action [82], with regional values up to 16 mg/m2, which is 

consistent with earlier work [49]. 

 

Figure 3. Spatial distributions of the daily mean values and differences of the aerosol burdens for 

each component (including dust, sulfate, organic carbon [OC], and black carbon [BC]) between the 

FR and DA experiment on 16 March 2021. The difference is defined as the result of the DA experi-

ment minus that of the FR experiment. 

The above results demonstrate that the assimilation of Himawari-8 AODs can signif-

icantly alter the spatial distribution of AODs and the aerosol column burdens of relevant 

individual components, thus changing the spatial pattern of SSR. 

4.2. Verification of DA on Aerosol ICs and Forecasts 

Then, the improvements of aerosol initial conditions and aerosol forecast by assimi-

lating Himawari-8 AODs are verified. We conducted a comparative analysis of the 

Himawari-8 observations, simulated AODs in the FR experiment (FR AODs), the first 

guess, and analyses (FG and DA AODs) in the DA experiment, the results are shown in 

Figure 4. The first guess AODs are the forecasts for another 24 h from a prior DA cycle a 

day ago, and the DA AODs are the results of the assimilation of Himawari-8 data. It 

should be noted that the comparisons are conducted between the observed and simulated 

AODs at 06:00 UTC every day. Such evaluations are considered internal checks rather 
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than independent validations and can reveal the influence of aerosol assimilation on the 

model simulations [43]. 

  

Figure 4. Spatial distributions of the mean AODs (a) observed by the Himawari-8, simulated in the 

(b) FR experiment, (d) first guess (FG, a priori), and (f) analyses (DA) in the DA experiment and 

their differences (c,e,g) with Himawari-8 at daily 06:00 UTC from 8 to 22 March 2021. 

The spatial distributions of the mean AODs observed by the Himawari-8, simulated 

in the FR experiment and DA experiment, and their differences with Himawari-8 at daily 

06:00 UTC are shown in Figure 4. Clearly, the spatial distributions of the FG and DA AODs 

are much more comparable to the Himawari-8 observations than those in the FR experi-

ment, especially over South and Southeast Asia and North China. It proves that the 

Himawari-8 AODs are successfully assimilated into the model to correct the aerosol initial 

conditions, leaving much more accurate ICs. The FR AODs miss most of the high values 

(beyond 1.1) over South and Southeast Asia and the adjacent Indian Ocean, with mean 

biases up to −0.50 (Figure 4c). The DA approach reproduces a more reasonable spatial 

distribution and corrects the generally negative initial biases in South and Southeast Asia 
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(Figure 4e), with lower mean biases below 0.30 (absolute value). The FG AODs further 

confirm that the aerosol forecasts benefit from correcting aerosol initial conditions by as-

similation of the Himawari-8 AODs. 

Figures 5a–c further show the comparisons of the probability density of the FR, FG, 

and DA AODs with the Himawari-8 observations at 06:00 UTC every day. Obviously, the 

FR AODs tend to be underestimated compared with the Himawari-8 observations (Figure 

5a), which will lead to large biases when serving as the ICs for the forecasting of the next 

days. With assimilation, the FG AODs are more concentrated, and more points align with 

the 1:1 line (Figure 5b). The BIAS values are −0.340, −0.135, and −0.040 for the FR, FG, and 

DA AODs, respectively, showing a significant bias reduction by DA. With the DA ap-

proach, the RMSE value of FG AODs is lower (0.290) and decreased by 37.90% compared 

to the FR ones. Meanwhile, DA improves the AOD ICs with a CORR value over 0.937 for 

DA AODs (Figure 5c), followed by a CORR value of 0.726 for the FG AODs, the latter 

increases by 38.02% compared to the FR AODs. For the FR, FG, and DA AODs, their IOA 

values are showing an increasing trend, from 0.554 to 0.957. Figure 5d further shows fre-

quency distributions of AOD deviations (PDF). Tending to underestimate the AODs over 

South and Southeast Asia (Figure 4), the distribution of the deviations for FR AODs is 

positively biased, with 26.11% of deviations dropping into the departures greater than 

0.50. After successfully assimilating the AODs into the WRF-Chem-Solar model, the dis-

tribution of the deviations for DA AODs essentially reduces bias and obeys normal distri-

bution. The distribution of FG AODs shows reduced bias, with 43.85% of deviations drop-

ping into the absolute departures less than 0.10, indicating that the assimilation exhibits 

improved consistency with observations compared with the FR AODs. 

 

Figure 5. Probability density distribution of the assimilated Himawari-8 AODs versus the simulated 

AODs in the (a) FR experiment, (b) first guess, and (c) analyses in DA experiment, calculated at 

daily 06:00 UTC from 8 to 22 March 2021. The continuous black line is the 1:1 line, and the dashed 

black lines correspond to the 1:2 and 2:1 lines. N shows number of data used. (d) Frequency distri-

butions of deviations (modeled AODs minus Himawari-8 observed ones). The percentages of devi-

ations between ±0.05, ±0.1, <−0.5, and >0.5 are also shown. 
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The simulated hourly AODs throughout 8–22 March 2021 are also evaluated with 

independent observations from AERONET and SONET. As shown in Figure S1, the high 

values of the observed mean AODs are located in stations near South (beyond 0.70) and 

Southeast Asia (beyond 1.10), NCP (beyond 1.10), and the coastal regions of Southeast 

China (beyond 0.70), which are in consistency with results in Figure 3b. Six typical sites 

are chosen to verify the AOD time series. Both stations in China and nearby regions are 

included to explore the DA effect, and only three SONET stations in China (Taiwan, Sanya 

and Jiaozuo stations) are chosen due to data missing. The comparisons of observed and 

simulated hourly AOD are given in Figure 6. 

 

Figure 6. Time series of the observed and simulated hourly AOD for the FR and DA experiments in 

six typical stations from 8 to 22 March 2021. 

Compared with the observations, results in the FR experiment underestimates the 

AODs, especially in relatively high-value stations. Their large RMSE values of the FR ex-

periments are significantly removed by the assimilation of the Himawari-8 AODs. For 

example, observed AODs in Sanya show obvious daily variations, especially on 16 March 

2021. The high AODs on that day is successfully reproduced by the DA experiment, and 

it is consistent with the DA results in Figure 3. DA helps to decrease its RMSE by 54.95%. 

At Hankuk University (Hankuk_UFS station), the sudden increase of AODs on 16 March 

is also detected by the DA experiment. In Doi Ang Khang station, the observed AODs 

remain at relatively high values due to serious anthropogenic emissions in Southeast Asia 

on March, which is consistent with DA results in Figure 3. Its RMSE value reaches 1.235 

in the FR experiment, with a poor CORR value of -0.150. A significant RMSE reduction 

and CORR elevation can be found by DA, with relative improvement up to 53.20% for 

RMSE. All in all, with higher CORR values, all the stations correctly modify the AODs 

variations to match the observations better. 

Figure 7a and b show the comparison of the probability density of the observed 

hourly AODs versus the ones from the simulated results with and without the assimila-

tion. Compared to the independent observations, apparently, the simulated AODs in the 

FR experiment led to obvious underestimations (Figure 7a). AODs assimilation essentially 

reduced the tendency and is superior to those in the FR experiment as indicated by the 

BIAS, RMSE, CORR, and IOA values (Figure 7b). For example, the BIAS values are −0.430 

in FR and −0.208 in DA; the latter reduces by about 51.62% compared to the former. The 

RMSE values show similar results. Meanwhile, the CORR and IOA values increase by 

about 61.29% and 40.61% compared to the FR experiment, indicating that the forecast 

fields are significantly improved by DA. Figure 7c shows the frequency distributions of 

AOD deviations. In the FR experiment, it reveals a positively bias, whereas in the DA 
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experiment, the results not only show reduced bias but show a peak closer to 0. Compared 

with FR ones, about 36.00% of AOD deviations drop into the absolute departures less than 

0.10 for the DA experiment, and 43.48% of AOD deviations are reduced in data dropping 

into the departures greater than 0.50. We also find that the DA is more efficient in correct-

ing highly overrated AODs with departures greater than 0.50 compared with underesti-

mated values with departures less than −0.50. Similar results have been observed during 

earlier works on assimilation AODs [49,83]. The above findings indicate that AOD assim-

ilation can significantly improve the model performance. 

 

Figure 7. Probability density distribution of the observed and simulated hourly AODs for the (a) FR 

experiment and (b) DA experiment from 8 to 22 March 2021 at all the observational sites. The con-

tinuous black line is the 1:1 line, and the dashed black lines correspond to the 1:2 and 2:1 lines. (c) 

Frequency distributions of deviations (modeled AODs minus observed AODs) from the observa-

tions. The percentages of deviations between ±0.05, ±0.1, <−0.5, and >0.5 are also shown. 

4.3. Improvement of the Clear-Sky Solar Power Prediction by DA 

The variations of AODs will change the evaluations of clear-sky solar power predic-

tion. To access the performance of clear-sky GHI simulation at an hourly scale in WRF-

Chem-Solar with and without assimilation, the GHI simulated by the original WRF-Solar 

version is also represented. The GHI values simulated by all three experiments are per-

formed in independent validations over the study period through a comparison with SSR 

stations in China. It should be mentioned that to avoid the influence of nearby sources, 

buildings, and heat islands, only rural and suburban stations are analyzed here, their lo-

cations are shown in Figure S2. Beyond that, we also evaluate simulation performance in 

the urban stations, which show consistent results (Table S1 and Figure S4). 

As shown in Figure 8, the probability density and PDF plots of the observed hourly 

GHI versus the simulated ones under clear skies for the three experiments are presented. 



Remote Sens. 2022, 14, 4990 13 of 20 
 

 

Due to the lack of aerosols, GHI in the OR experiment is overestimated (Figure 8a), with 

BIAS beyond 72 W/m2 and RMSE beyond 159 W/m2. Apart from the minor improvement 

of CORR and IOA values, the BIAS and RMSE valves in the FR and DA experiments are 

all superior to the OR ones and present best performances in DA experiment (Figure 8b 

and c). Their relative improvements (compared with the OR experiment) are 44.52% and 

61.95% for BIAS, 9.75%, and 11.50% for RMSE, separately. Compared to the OR experi-

ment, the PDF distributions for the other two experiments all show reduced bias, as indi-

cated by higher frequencies of deviations within 20 (Figure 8d). Meanwhile, the weak neg-

ative biases of the OR experiment are improved by the experiments online coupled with 

chemistry, leading to peaks closer to 0. We also find that the DA is more efficient in cor-

recting overly underestimated GHI with departures less than −50 W/m2, which is related 

to the better performance of AODs DA with departures greater than 0.5 in Figure 7b. All 

in all, 38.61% of stations have significant improvements (both for RMSE and CORR val-

ues), 59.51% of stations have lower RMSE values, and 53.46% of stations have higher 

CORR values in rural and suburban areas. 

 

Figure 8. Probability density distribution of the observed versus the simulated hourly GHI under 

clear skies for the (a) OR, (b) FR and (c) DA experiments from 8 to 22 March 2021, only rural and 

suburban stations are analyzed. The continuous black line is the 1:1 line, and the dashed black lines 

correspond to the 1:2 and 2:1 lines. (d) Frequency distributions of deviations (modeled GHI minus 

observed GHI under clear skies) from the observations. The percentages of deviations between 

±0.05, ±0.1, <−0.5, and >0.5 are also shown. 

We further explore the GHI simulation performance in the main seven electricity 

grids in China according to the grid distribution [84], including Northeastern China, 

Northern China, Eastern China, Southern China, Central China, Western China, and Ti-

betan Plateau (Tibetan), separately. The partition is shown in Figure 1b. The comparisons 

of observed and simulated mean GHI and their relative change at rural and suburban 

stations under clear skies in different regions are given in Table 3. Comparatively speak-

ing, AOD assimilation plays a weak role in improving the CORR and IOA. It is clear that 

the major and most obvious improvements are represented in revisions of the large BIAS 

and RMSE values. The GHI values are obviously overestimated in the OR experiment for 
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all seven regions. Moreover, the DA experiment shows the best performance among the 

three experiments for the BIAS values, with an average relative improvement beyond 

53%. Meanwhile, East, Central, and West China show the most remarkable decreasing 

BIAS, with relative values beyond 68.98%, 76.50%, and 70.76% compared with the OR 

experiment. Except for West and Tibetan of China, the RMSE values in other regions are 

the lowest in the DA experiment. The inconspicuous effect of DA in the two regions may 

come from the absence of observations of Himawari-8 to be assimilated, as we talked 

about in Section 3.1. 

Table 3. The comparison of the hourly observational GHI with simulated ones in OR, FR, and DA 

experiments in seven electricity regions, only rural and suburban stations are analyzed. 

Regions N Experiments BIAS RMSE CORR IOA 

North East-

ern 
1084 

OR 49.980 93.664 0.920 0.943 

FR 30.918 84.651 0.921 0.953 

DA 23.240 83.873 0.917 0.954 

Northern 731 

OR 101.039 143.234 0.865 0.871 

FR 63.619 114.327 0.881 0.913 

DA 46.346 104.749 0.886 0.927 

Eastern 342 

OR 88.366 120.377 0.928 0.923 

FR 47.814 94.106 0.929 0.951 

DA 27.412 90.098 0.921 0.955 

Southern 562 

OR 111.054 176.936 0.840 0.887 

FR 71.735 151.104 0.846 0.915 

DA 41.776 133.711 0.854 0.932 

Central 951 

OR 72.450 208.284 0.737 0.841 

FR 19.840 185.317 0.766 0.870 

DA 17.020 184.346 0.768 0.871 

Western 1328 

OR 41.392 156.566 0.842 0.910 

FR 14.320 149.571 0.846 0.916 

DA 12.102 151.194 0.842 0.914 

Tibetan 273 

OR 146.070 230.096 0.818 0.851 

FR 137.654 226.330 0.815 0.854 

DA 135.003 226.468 0.810 0.854 
N shows number of data used. 

Then seven typical rural and suburban stations from the main seven electricity re-

gions are picked out, their information is given in Table 4, and their time series of the 

observed and simulated hourly GHI under clear skies are shown in Figure 9. Apparently, 

GHI in OR and FR experiments tend to overestimate the daily high values in most stations, 

especially in Huaian and Tengchong stations. After DA, the simulated GHI values are 

closer to the observed ones, and the overestimation trends are corrected. Huaian station 

shares the best corrections, the RMSE value decreases by 43.07% in the DA experiment 

compared with the OR one. Overall, DA help to reproduce better variations from hours 

to days. 
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Table 4. The information of the 7 typical stations. 

Station Name Regions Latitude Longitude Station Tsype 

Erlianhaote Northern 43.63°N 111.94°E Prairie 

Jiamusi North Eastern 40.08°N 113.41°E Plain 

Panzhihua Central 26.58°N 101.72°E Mountainside 

Cuona Tibetan 27.98°N 91.95°E  Plateau 

Huaian Eastern 33.64°N 118.93°E Suburban 

Tengchong Southern 24.98°N 98.51°E Suburban 

Xining Western 36.66°N 101.73°E Suburban 

 

Figure 9. Time series of the observed and simulated hourly GHI under clear skies for the OR, FR, 

and DA experiments in seven typical rural and suburban stations from 8 to 22 March 2021. 

5. Conclusions 

Assimilating high-quality geostationary satellite aerosol optical depth (AOD) da-

tasets is a useful approach to improve global horizontal irradiance (GHI) predictions. In 

this study, the chemistry aerosol model is firstly coupled online with the radiation model 

in WRF-Solar to calculate the surface solar radiation (SSR) with real-time changing aero-

sol. Based on the newly developed WRF-Chem-Solar model, a Three-Dimensional 
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Variational (3DVAR) aerosol assimilation system is further adopted to assimilate the AOD 

observations from a new generation geostationary satellite (Himawari-8) every 24 h win-

dow from 8 to 22 March 2021. The performances of the simulated hourly output of AODs 

and SSR are evaluated by the assimilated Himawari-8 AOT observations, the independent 

AERONET/SONET AOD observations and SSR observations. The major findings from 

this work are summarized as follows:  

Firstly, the results show that the assimilation of Himawari-8 AODs can significantly 

alter the spatial distribution of AODs and the relevant individual aerosol components.  

Secondly, the impact of AOD data assimilation (DA) on aerosol initial conditions 

(ICs) and forecasts are verified by Himawari-8 AOD data and independent observational 

sites. Compared with experiments without assimilation (FR), DA reproduces a more rea-

sonable spatial distribution of AOD ICs and corrects the generally negative initial biases 

in South and Southeast Asia and the adjacent seas. For the first guess AODs, the CORR 

value increases by 38.02% compared with the FR ones. Generally speaking, DA can sig-

nificantly improve model AOD ICs by mitigating the underestimations. After DA, the 

negative BIAS and RMSE of forecast in the FR experiment are greatly improved with 50% 

reductions, and the CORR and IOA biases are reduced by about61.29% and 40.61%, sep-

arately.  

Finally, improvement of the clear-sky GHI by DA is quantified by independent ob-

servations. Overall, due to the lack of online coupling of aerosol processes, GHI in the 

original WRF-Solar version is overestimated. The FR and DA experiments present signif-

icant better performances with relative improvements of 44.52% and 61.95% for BIAS, 

9.75% and 11.50% for RMSE, separately. We also find that the DA experiment is more 

efficient in correcting overly underestimated GHI than the overestimated ones. 

Supplementary Materials: The following supporting information can be downloaded at: 

https://www.mdpi.com/article/10.3390/rs14194990/s1, Figure S1: Spatial distributions of the (a) ob-

served mean AODs ; Figure S2: The locations of the SSR stations and their types; Figure S3: The 

mean wind speed for the observed stations and the simulated ones in FR experiment from 8 to 22 

March 2021; Figure S4: Probability density distribution of the observed versus the simulated hourly 

GHI under clear skies for the (a) OR, (b) FR and (c) DA experiments in urban stations from 8 to 22 

March 2021. The continuous black line is the 1:1 line, and the dashed black lines correspond to the 

1:2 and 2:1 lines. (d) Frequency distributions of deviations (modeled GHI minus observed GHI un-

der clear skies) from the observations. The percentages of deviations between ±0.05, ±0.1, <−0.5, and 

>0.5 are also shown. Table S1: The comparison of the hourly observational GHI with simulated ones 

in OR, FR, and DA experiments in seven electricity regions, only urban stations are analyzed. 
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