
Xu et al. Geoscience Letters            (2022) 9:25  
https://doi.org/10.1186/s40562-022-00234-x

RESEARCH LETTER

Robustness of the long-term nonlinear 
evolution of global sea surface temperature 
trend
Zhenhao Xu1,3, Gang Huang1,2,3*  , Fei Ji4,5*, Bo Liu6, Fei Chang7 and Xichen Li8 

Abstract 

The multi-scale variability of global sea surface temperature (GSST), which is often dominated by secular trends, sig-
nificantly impacts global and regional climate change. Previous studies were mainly carried out under linear assump-
tions. Even if the nonlinear evolution patterns have been discussed based on annual-mean data, the conclusions are 
still insufficient due to several factors. Here, based on the Ensemble Empirical Mode Decomposition (EEMD) method, 
the robustness of GSST trends tied to the sampling frequency and time interval selection is further explored. The main 
features derived from the annual-mean data are maintained. However, monthly and seasonal-mean data both mute 
the cooling in the equatorial central Pacific and the Southern Ocean in the Pacific sector, meanwhile intensify and 
expand the warming over the North Pacific. The results also highlight that early data cause a minimal effect on secular 
trends except for the portion near the start point of the interval due to the local temporal nature of EEMD. Overall, the 
long-term GSST trends extracted by EEMD have good robustness. Our research also clarifies that quadratic fitting can-
not reveal all the meaningful evolution patterns, even as a nonlinear solution.
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Introduction
It is undeniable that the accumulated greenhouse gases 
(GHGs) caused by human activities lead to remark-
able warming of the climate system, widely covering the 
atmosphere, hydrosphere, and land surface, which has 
profoundly affected natural ecosystems and human social 
activities (IPCC 2021; Huang et al. 2022).

As an essential component of the climate system, the 
ocean, especially for several critical regions, is highly 
associated with global and regional climate change 
(Kosaka and Xie 2013, 2016; Yao et  al. 2017). Due to 
its vast surface, enormous mass, and heat capacity, the 

ocean essentially regulates the Earth’s Energy Imbal-
ance arising from the so-called greenhouse effect (Chen 
and Tung 2014). It is also confirmed that the ocean 
absorbs over 90% of the surplus heat from GHGs since 
the mid-nineteenth century (Levitus et  al. 2000, 2012; 
Trenberth et  al. 2014; Nieves et  al. 2015; Cheng et  al. 
2019). What’s more, 2021 is the new warmest year for 
the world ocean despite La Niña conditions, accord-
ing to reliable ocean heat content (OHC) records by 
humans (Cheng et al. 2022). Nevertheless, the momen-
tum and heat exchange between the ocean and the 
atmosphere is substantially related to the sea surface 
temperature anomaly (SSTA) (Deser et  al. 2010). It 
has also been revealed that multi-scale climate change 
is dramatically influenced by the variabilities of sea 
surface temperature (SST), typically dominated by 
secular trends (Yao et  al. 2017; Chen and Tung 2017; 
Zhang et al. 2019). Thus, a deeper understanding of the 
long-term evolution of global sea surface temperature 

Open Access

*Correspondence:  hg@mail.iap.ac.cn; jif@lzu.edu.cn

1 State Key Laboratory of Numerical Modeling for Atmospheric Sciences 
and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese 
Academy of Sciences, Beijing 100029, China
4 College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, 
China
Full list of author information is available at the end of the article

https://orcid.org/0000-0002-8692-7856
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40562-022-00234-x&domain=pdf


Page 2 of 9Xu et al. Geoscience Letters            (2022) 9:25 

(GSST) is beneficial to the understanding of climate 
change.

As mentioned by Xu et  al. (2021), previous studies 
of long-term trends in GSST were primarily based on 
linear assumptions, yet there was no evidence indicat-
ing that the intrinsic trends are linear (Wu et al. 2007; 
IPCC 2013). Therefore, previous studies discussed the 
long-term trend based on an adaptive and nonlinear 
method named EEMD (Huang et  al. 1998; Huang and 
Wu 2008; Wu and Huang 2009; see more details in 
Sect. 2) and illuminated the region-dependent warming 
fact of GSST’s centennial trend with a novel perspec-
tive. However, there are still a few gaps that previous 
studies carried out investigations based on annual-
mean data to reduce computation costs, while the 
sampling frequency may change the secular trends by 
affecting the extraction process of the EEMD method. 
Another factor is the insufficient quality of early obser-
vations, whose impacts on the findings cannot be arbi-
trarily ignored. Accordingly, although the nonlinear 
trend has been examined in some detail, there is still a 
shortage of information as well as an incomplete frame 
about its robustness of regional evolution features, and 
further discussion is needed.

Here, to explore the long-term nonlinear evolution 
trend of GSST more comprehensively, the robustness of 
the conclusions with different sampling frequencies is 
discussed by comparison in terms of monthly, seasonal-
mean, and annual-mean data, respectively. Furthermore, 
considering observation resolution was very sparse in the 
early twentieth century, the first 20 and 40 years of GSST 
will also be removed, respectively. We also aim to inves-
tigate whether a priori quadratic fitting may reveal some 
meaningful patterns.

The other sections are arranged as follows: Sect.  2 
describes the SST dataset and details of the research 
methodology. In Sect. 3, the robustness of GSST trends 
tied to the sampling frequency and time interval selec-
tion is demonstrated. What’s more, this section also 
shows the intrinsic trends derived from quadratic fitting. 
Finally, Sect. 4 summarizes and discusses this study.

Data and method
Data
We used the Extended Reconstructed Sea Surface 
Temperature dataset (version 5) (ERSST v5) from the 
National Oceanic and Atmospheric Administration 
(NOAA) with a spatial resolution of 2° × 2°, which pro-
vides global monthly SST from 1854 to the present 
(Huang et  al. 2017). In this study, the time interval was 
limited to 1900–2020. We averaged the monthly SST data 
into seasonal-mean and annual-mean data, respectively.

The EEMD method
In recent years, time–frequency analysis methods have 
expanded rapidly. Much attention has been paid to the 
Ensemble Empirical Mode Decomposition (EEMD) 
method, which is suitable for adaptive and local anal-
ysis of the nonlinear and nonstationary time series 
(Huang and Wu 2008; Wu and Huang 2009). EEMD is 
an improvement of the Empirical Mode Decomposi-
tion (EMD) method (Huang et  al. 1998), which effec-
tively overcomes a problem named "Mode mixing", i.e., 
any IMF consisting of oscillations with quite disparate 
timescales simultaneously due to the intermittency of 
the driving mechanisms (Wu and Huang 2009).

A brief procedure of the EEMD decomposition is 
demonstrated as follows:

(i) Add a group of white noise εi(t)(i = 1, 2, 3 . . .N ) to 
SSTA(t) , respectively:

where xi(t) and εi(t) are the ith new white-noise-added 
series and realization white noise sequence with ampli-
tude equal to a specific ratio of the standard deviation of 
x(t) , respectively. N  is the ensemble number. The inten-
sity of the white noise should be a proper value. Signals 
dominated by low frequency should use smaller ampli-
tude, and vice versa. According to Wu and Huang (2009), 
the white noise is applied with a standard deviation of 
0.2;

(ii) Located all the maxima (minima) of the time 
series and connected them with a cubic spline interpo-
lation as an upper (lower) envelope for each xi(t);

(iii) Define the mean of upper and lower envelopes as 
mi(t) , then compute the difference between xi(t) and 
mi(t) to yield a new series hi(t):

(iv) Judge that hi(t) meets the qualifications for being 
Intrinsic Mode Function (IMF), denoted as c1i(t) . Here, 
the two conditions are (a) the number of zero-crossings 
and extrema are equal to or differs by at most one; (b) 
the averaged sequence of the upper and lower enve-
lopes is zero among the whole period (Huang et  al. 
1998). c1i(t) = hi(t) is established if the conditions 
above are satisfied; otherwise, just set xi(t) = hi(t) , 
repeat steps (ii)–(iv) until established. Then extract 
c1i(t) from the original series:

(v) Regard fi(t) as a new original series just like 
xi(t) and repeat the above steps (ii)–(iv) to obtain 
other IMFs, i.e., c2i(t), c3i(t) . . . , cmi(t) , until residual 

(1)xi(t) = SSTA(t)+ εi(t),

(2)hi(t) = xi(t)−mi(t);

(3)fi(t) = xi(t)− c1i(t);
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becomes a strictly monotonic function or with only one 
extremum, marked as ri(t);

(vi) Obtain the ensemble means of corresponding IMFs 
and the secular trend of the decompositions as a result:

Thus, in EEMD, a time series x(t) at each grid is decom-
posed into several amplitude–frequency-modulated 
oscillatory components cj(t) and r(t) , which is a curve 
either monotonic or containing only one extremum:

Note that Eq.  (6) is an asymptotic relation when the 
ensemble number approaches infinity. Thus, the larger 
ensemble number leads to a better approximation. Here, 
following Xu et  al. (2021), the ensemble number ( N  ) is 
set to 400. Besides, the number of cj(t) is determined as 
follows:

where M is the length of a time series. Since the time 
interval of the study was restricted to 1900–2020, the 
values of m were 5, 8, and 10, corresponding to annual-
mean, seasonal-mean, and monthly data, respectively.

Benefiting from the adaptive and local nature of the 
EEMD method, the obtained amplitude–frequency-mod-
ulated IMFs and secular trend are free from any priori 
subjective assumptions, utterly data-driven. What’s more, 
the conclusions are almost irrelevant to the time interval 
selection, which means they do not suffer from the inter-
ference of newly introduced data (Wu and Huang 2009; 
Qian et al. 2010; Wu et al. 2011, 2022; Ji et al. 2014; Wei 
et al. 2019; Xu et al. 2021).

EEMD trend and warming rate
Here, a grid-by-grid decomposition of SSTA is analyzed 
by the EEMD method (Wu et al. 2009, 2022; Ji et al. 2014; 
Xu et  al. 2021). Following Ji et  al. (2014), we define the 
EEMD trend of a time series as:

Here, t0 refers to 1900. Since the long-term trend 
extracted by EEMD is a continuous function, the EEMD 
trend of June and summer (averaged from June to 

(4)cj(t) = lim
N→∞

1

N

N
∑

i=1

cji(t)
(

j = 1, 2, 3 . . . ,m
)

,

(5)r(t) = lim
N→∞

1

N

N
∑

i=1

ri(t).

(6)SSTA(t) =

m
∑

j=1

cj(t)+ r(t).

(7)m =
⌊

log2M
⌋

− 1,

(8)Trend(t) = r(t)− r(t0).

August) will be selected and presented to represent the 
specific year, respectively, for monthly and seasonal-
mean data. We also clarify that similar results can be 
reached when other months or seasons are employed.

In addition, the instantaneous warming rate is then 
defined as the derivative of EEMD trend, numeri-
cally approximated by calculating the central dif-
ference quotient. For example, the instantaneous 
warming rate in 1950 for yearly data should be writ-
ten as Rate(1950) = (Trend(1951)− Trend(1949))/2 . 
When focusing on seasonal-mean and monthly data, 
the right-hand side of the equation above will be  
replaced with 4 ∗

(

Trend(1950Autumn)− Trend
(

1950Spring

))

/2 
and 12 ∗ (Trend

(

1950July

)

− Trend
(

1950May

)

)/2, respectively.

Results
Long‑term evolution of GSST trends tied to the sampling 
frequency
Each ocean basin has several principal patterns, such as 
El Niño-Southern Oscillation (ENSO), Pacific Decadal 
Oscillation (PDO), and Atlantic Multidecadal Oscillation 
(AMO), etc., ranging from interannual to multi-decadal 
timescales. Yet, the secular trend dominates the largest 
variance contribution, corresponding to the well-known 
"global warming". Here, after EEMD decomposition, the 
internal variability modes of the SST series are removed 
into IMFs, and what is extracted are the long-term trends 
defined previously. Although Xu et  al. (2021) character-
ized the nonlinear evolution of GSST from an annual-
mean perspective under the consideration of reducing 
computational cost, the sampling frequency of the data 
may affect the decomposition process and thus the mag-
nitude even direction  of secular trend. In this section, 
the discrepancy of the results derived from monthly, sea-
sonal-mean, and annual-mean SST, respectively, will be 
compared with the aim of enhancing the comprehensive 
understanding of the robustness of previous findings.

As shown in Fig.  1, the main features of the long-
term nonlinear evolution trends are identical, but still 
have visually discernable differences. Before 1910, only 
the EEMD trends derived from annual-mean data 
show cumulative changes that could be noticed (> 0.3 K 
or < − 0.3 K), as reflected in the weak cooling of the equa-
torial central Pacific. By 1925, the EEMD trend derived 
from monthly and seasonal-mean data appears to have 
slight cooling in the equatorial central Pacific, while the 
magnitude and extent are much smaller than in annual-
mean data. Meanwhile, the warmer regions are relatively 
more similar among different periods, while the warm-
ing signal over the North Pacific is intensified. Another 
distinctive feature is that the annual-mean data show a 
cooling pattern in the Southern Ocean in the Pacific sec-
tor, while the remaining groups appear near the 1940s. 
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Around the mid-twentieth century, the negative pattern 
in the equatorial central Pacific began to shrink. Cor-
respondingly, there was also a dramatic reversal of the 
instantaneous warming rate in this region, with cooling 

marked contraction and a shift to rapid warming (see 
Additional file  1: Fig. S1). From the mid-twentieth cen-
tury to the early twenty-first century, the magnitude 
of EEMD trends has been increasing in most regions 

Fig. 1 Spatial evolution of the EEMD trend of global sea surface temperature tied to the sampling frequency. From top to bottom, the EEMD trend 
ended in 1910, 1925, 1940, 1955, 1970, 1985, 2000, and 2019, respectively. From left to right, EEMD trends are derived from monthly, seasonal, and 
annual data, respectively. Note that the color bar is the same as Xu et al. (2021) and below
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(acceleration of warming rate, shown in Additional file 1: 
Fig. S1), whereas the North Atlantic Ocean conversely 
experienced a continuous cooling.

For the EEMD trend from 1900 to 2019, the equatorial 
central Pacific still shows no visually detectable warming, 
except for seasonal-mean data. Also, the Southern Ocean 
in the Pacific sector has a negative EEMD trend related to 
the circulation dynamics of the Southern Ocean (Speer 
et al. 2000; Long et al. 2020; Xu et al. 2022). On the other 
hand, the North Atlantic has a so-called "warm hole" 
(Drijfhout et  al. 2012; Woollings et  al. 2012; Marshall 
et  al. 2015), although it is relatively weak in the EEMD 
trend derived from monthly data. The heaviest warming 
occurs over several regions, including the Arctic Ocean, 
the entire Indian Ocean, east of the continents in the 
northern hemisphere, the Southern Ocean from the tip 
of South Africa expanded to the Indian Ocean, the Gulf 
of Guinea, and the eastern tropical Atlantic Ocean is 
pretty consistent.

In summary, the cooling trends over the equatorial 
central Pacific and the Southern Ocean in the Pacific 
sector retrieved from the monthly and seasonal-mean 
datasets are relatively weaker compared to that of the 
annual-mean datasets, meanwhile intensify and expand 
the warming trends over the North Pacific. Apart from 
that, the primary features are comparatively consistent, 
indicating better robustness of the conclusion regarding 
sampling frequency. Noticeably, the sampling frequency 
has almost no effect on the findings obtained from pre-
vious linear assumptions since no extraction process of 
IMFs is involved (see Additional file 1: Figs. S2 and S3).

Warming rate of GSST trends tied to the time interval 
selection
Climatological studies on GSST have been suffering from 
a dilemma in both record length and accuracy of obser-
vation data. In the early twentieth century, ship-based 
archives were extremely coarse and sparse, risking dis-
tortion of the SST field obtained by several statistical 
approaches. In contrast, despite the high spatial resolu-
tion of satellite data in recent years, the short observa-
tion period does not apply to some studies on longer time 
scales, such as climate variability on multi-decadal scales 
or long-term trends.

Here, to explore how the nonlinear secular trends 
extracted by the EEMD method are affected by the ear-
lier data, the SST data during the period 1900–1920 
and 1900–1940 are removed, respectively. We arbitrar-
ily select two points located in the South Atlantic and 
the equatorial Pacific, obtaining their annual-mean 
series for preliminary analysis, with the results shown 
in Fig.  2. For comparison and visual presentation, the 

anomaly series are all relative to the 1900–2020 base-
line period for either choice of the time interval.

The EEMD decomposition process necessitates con-
necting all the extrema to yield the envelope, which 
is vital in extracting IMFs. While only the maximum/
minimum value can be determined by the information 
at the endpoints of the interval, the other side is availa-
ble in a non-completely objective way. As a result, spu-
rious oscillations can occur near the endpoints, known 
as the "end effect". In Fig. 2a, the long-term trend of a 
regional mean SST in the South Atlantic, especially in 
the early period, shows some differences when the time 
interval investigated is changed. The other one, located 
in the equatorial east-central Pacific, inspires a more 
dramatic phenomenon (see Fig.  2b). The first cooling 
and then warming feature around the 1940s revealed by 
Xu et al. (2021) is replaced by persistent rapid warming 
when the first 20 years or more of the data are removed.

The warming rate is better than the EEMD trend here 
to compare the details of these cases because the lat-
ter highly relies on the secular trend in 1900, which is 
unavailable when the early data are absent. Thus, Fig. 3 
shows the warming rate of GSST related to the time 
interval selection.

Around 1925, the extensive and intense cooling rate 
in the equatorial central Pacific and the southern part of 
the Southern Ocean in the Pacific sector was replaced by 
mild warming trend in case the first two decades were 
removed. It seems that the Southern Ocean, in general, 
appears to have a larger magnitude of warming rate. In 
addition, the cooling pattern in the North Atlantic, the 
Arctic Ocean, and the Southern Indian Ocean is largely 
enhanced, replacing the original warming features, by 
the 1940s, the Southern Ocean in the Pacific sector 
completely converted to a warming pattern. After the 
mid-twentieth century, the SST of the first two decades 
slightly affects the evolution rate, consistent with the case 
shown in Fig. 2. While at this time, the noticeable warm-
ing/cooling area precipitous dropped but the warming 
was enhanced over the Southern Ocean directly oppo-
site Australia and the South Atlantic, the cooling over 
the North Atlantic, for the absence of the first 40 years of 
SST. Sporadic cooling signals were also reported across 
the Pacific and Indian Oceans. During recent decades, 
especially in 2019, the most rapid warming occurred in 
the Arctic Ocean, the entire Indian Ocean, the western 
boundary current and their extensions in both hemi-
spheres, and the tropical central Pacific Ocean, respec-
tively, no matter of any case. Yet the more extended 
period of SST removal, the more significant magnitude of 
the warming rate and the keener cooling in the region of 
the Southern Ocean adjacent to the Antarctic.
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The intrinsic trends derived from quadratic fitting
One of the most striking features of the GSST nonlin-
ear evolution over the past century is that the equatorial 
eastern Pacific and the Southern Ocean in the Pacific 
sector first experienced a cooling followed by a warming 
in the middle of the last century (Xu et al. 2021), which 
implies that the EEMD trend is not monotonic in these 
regions. While the property of EEMD dictates that the 
long-term trend has at most one extreme in the whole 
span (Wu et  al. 2007), it is natural to consider whether 
the quadratic function, although logically a priori, could 
expose some similar characteristics?

Similar to the EEMD trend, the internal trend 
derived from quadratic fitting is defined as 
Trendqua(t) = curvequa(t)− curvequa(t0) , which is pre-
sent in Fig. 4. Compared with the left column of Fig. 1, 
in terms of early cooling, the tropical Central Pacific is 
invisible ( 

∣

∣Trendqua(t)
∣

∣ < 0.3K  ), the Southern Ocean 
narrowed dramatically, and only the Southwest Indian 
Ocean had a weak expansion. By 2019, the intrinsic 
trend shows warming almost everywhere except the 
North Atlantic, while the equatorial central Pacific and 
the Southern Ocean exhibit noticeable warming. The 

strongest warming also occurs over the Arctic Ocean, the 
Indian Ocean, east of the continents, the Southern Ocean 
to the east of South Africa, the Gulf of Guinea, and the 
eastern tropical Atlantic Ocean. On the whole, the spatial 
distribution obtained from the quadratic fitting appears 
flatter and smoother than the EEMD trend, which pre-
sumably embodies a more significant spatial coherence.

Although the intrinsic trends derived from quadratic 
fitting retain several evolutionary features, many signifi-
cant phenomena have been obscured. The conclusions 
above indicate that a priori quadratic fitting may not 
reveal all the meaningful patterns as EEMD, even if it is 
also a nonlinear solution.

Conclusions and discussion
As the greenhouse effect induces the accumulation of 
heat surpluses in the climate system, the response of SST 
to global warming is not homogeneous but shows a clear 
regional feature. Although the long-term evolution of the 
GSST trend was displayed by annual-mean data from 
1900, the EEMD decomposition involves a multi-step 
extraction, which may be affected by several factors such 

Fig. 2 The temporal locality of EEMD decomposition of the annual SSTA at a (42°S—46°S, 58°W—54°W) averaged in the South Atlantic; b (2°S—
2°N, 122°W—118°W) averaged in the equatorial Pacific. From top to bottom, the curves represent the raw data, EEMD components ( cj ), and secular 
trend. The curves are colored from light to dark in each panel, representing 1900–2020, 1920–2020, and 1940–2020, respectively
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as the sampling frequency and the time interval. This 
study further discusses the robustness of the nonlinear 
evolution trend, despite some numerical differences, as a 
hint for future research.

By contrasting the EEMD trend in different cases, we 
found that the primary features derived from monthly/
seasonal-mean data are pretty consistent with annual-
mean data. However, they also mute the cooling in the 

Fig. 3 Warming rate of global sea surface temperature tied to the time interval selection. From top to bottom, the instantaneous warming rate 
of the secular trend in 1910, 1925, 1940, 1955, 1970, 1985, 2000, and 2019, respectively. From left to right, the instantaneous warming rates are all 
derived from the annual data, but the time interval is 1900–2020, 1920–2020, and 1940–2020, respectively
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equatorial central Pacific and the Southern Ocean in the 
Pacific sector while emphasizing more warming over 
most North Pacific in both magnitude and surface area. It 
is still unclear whether extra-tropical physical processes 
drive the phenomena revealed by these statistical tools, 
and the related mechanisms need to be further investi-
gated. Besides, the last part of our study also specifies 
that the quadratic fitting scheme does not successfully 
reveal the long-term evolution trends. Actually, there 
is no a priori way to know which areas are intrinsically 
characterized by such trend features, which is also logi-
cally incompatible.

As for the time interval of the EEMD decomposition, 
the secular trends usually suffers from the uncertainties 
of the reconstructed datasets, especially when the early 
record due to the World Wars were primarily based on 
the sparse ship-based observation. Taking advantage 
of the temporal localization of EEMD, variation is only 
induced near the left endpoint of the interval when the 
early data are removed, as long as the number of IMFs is 
invariant, according to formula (8). It is also important to 
point out that, for all three cases covered in that section, 
the secular trends obtained by the longer SST may mask 
potential oscillations stuck between their whole span, 
making the final evolution trends different.

In conclusion, exploring the nonlinear evolution of 
GSST trends contributes to a comprehensive under-
standing of the climate system’s response to global 
warming. This research aims to enrich and refine 

the conclusions from the nonlinear perspective dis-
closed by the EEMD decomposition, which provides 
new evidence for the robustness of several findings. 
Even though the physical mechanisms are not fully 
explained, we believe our work lays a stronger research 
foundation for future efforts.
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