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The sea ice formation and dissipation processes are complicated and involve many
factors and mechanisms, from the basal growth/melting, the frazil ice formation, the
snow ice processes to the dynamic process, etc. The contribution of different factors
to the sea ice extent among different models over the Antarctic region has not been
systematically evaluated. In this study, we evaluate and quantify the uncertainties
of different contributors to the Antarctic Sea ice mass budget among 15 models
from the Coupled Model Intercomparison Project Phase 6 (CMIP6). Results show
that the simulated total Antarctic Sea ice mass budget is primarily adjusted by the
basal growth/melting terms, the frazil ice formation term and the snow-ice term,
whereas the top melting terms, the lateral melting terms, the dynamic process and the
evaporation process play secondary roles. In addition, while recent studies indicated
that the contributors of the Arctic Sea ice formation/dissipation processes show strong
coherency among different CMIP models, our results revealed a significant model
diversity over the Antarctic region, indicating that the uncertainties of the sea ice
formation and dissipation are still considerable in these state-of-the-art climate models.
The largest uncertainties appear in the snow ice formation, the basal melting and the
top melting terms, whose spread among different models is of the same order of
magnitude as the multi-model mean. In some models, large positive bias in the snow ice
terms may neutralize the strong negative bias of the basal/top melting terms, resulting
in a similar value of the total Antarctic Sea ice area compared with other models,
yet with an inaccurate physical process. The uncertainties in these Antarctic Sea ice
formation/dissipation terms highlight the importance of further improving the sea ice
dynamical and parameterization processes in the state-of-the-art models.

Keywords: Antarctic Sea ice, uncertainty, climate models, CMIP6, mass budget

INTRODUCTION

The Arctic/Antarctic Sea ice plays an important role in the global climate system. Sea ice variability
may largely contribute to the surface albedo (Hall, 2004; Perovich et al., 2007), the atmosphere-
ocean heat fluxes (Heil et al., 1996), the formation of the deep water and further the deep ocean
overturing circulations (Pellichero et al., 2018). A series of recent works focused on the variabilities
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of polar sea ice (Stroeve et al., 2007; Cavalieri and Parkinson,
2008; Parkinson and Cavalieri, 2008, 2012; Comiso et al., 2011;
Johannessen et al., 2016; Lind et al., 2018; Chemke and Polvani,
2020; SIMIP Community, 2020). E.g., recent studies evaluated
simulation results of the Arctic Sea ice mass budget, indicating
that the contribution of each factor has strong coherency
among different Coupled Model Intercomparison Project Phase
6 (CMIP6) models (Keen et al., 2021). However, relatively fewer
studies paid attention to the mass budget of Antarctic Sea
ice simulated in the state-of-the art climate models. Previous
studies have demonstrated clear seasonality in Antarctic Sea ice
extent, which oscillated between 3.1 × 106 km2 in February
and 18.5 × 106 km2 in September (Parkinson and Cavalieri,
2008, 2012). The Antarctic Sea ice extent experienced a long-
term increase (Parkinson and Cavalieri, 2012; Comiso et al.,
2017) by about 1.7 ± 0.2%/dec, followed by a sudden loss
after 2015 (De Santis et al., 2017; Kusahara et al., 2018). It
reached the maximum in September 2014 since 1978 with the
extent exceeding 20 × 106 km2 (Comiso et al., 2017). However,
long-term variation of sea ice extent (SIE) was not consistent
in all regions. The Bellingshausen/Amundsen Sea (BAS) had a
negative (−3.6%) trend despite that all other regions exhibited
a positive trend or remained stable from 1979 to 2015, and
the largest positive trend was found in the Ross sector (4.5%)
(Comiso et al., 2017). On the other hand, the sea ice thickness
is another important property, which varies in seasons and plays
an important role in the Antarctic ice budget (Worby et al.,
2008; Kurtz and Markus, 2012). Although the ship-based and the
recently launched satellite observations (Worby et al., 2008; Kurtz
and Markus, 2012) provided some useful information about the
Antarctic Sea ice thickness, we still do not have long-lasting
measurement of the entire Antarctic sea ice thickness to study the
ice mass budget (Paul et al., 2018), leaving the numerical models
the most important tools to investigate the Antarctic Sea ice mass
balance, as well as the role of each influencing factor.

The coupled global climate model is a widely used tool
in studying Antarctic Sea ice variability (Yang et al., 2016;
Timmermann et al., 2017; Schroeter et al., 2018; Boucher
et al., 2020; Danabasoglu et al., 2020; DuVivier et al., 2020).
The Coupled Model Intercomparison Project (CMIP) provides
an ideal testbed to evaluate the sea ice mass budget and its
uncertainties among different models. However, the simulated
Antarctic Sea ice has large biases in comparison to the
observations (Hosking et al., 2013). The trend of CMIP5
multi-model ensemble mean SIE shows a clear decrease by
−3.36 ± 0.15 × 105 km2 decade−1 (Shu et al., 2015).
By contrast, the multi-model mean of CMIP3 also show a
decreasing trend by −1.23 × 105 km2 per decade (Arzel
et al., 2006), which is opposite to the slight increase in
observations (Mahlstein et al., 2013; Gagné et al., 2015;
Shu et al., 2015). The annual cycle of SIEs simulated by
the CMIP5 models are quite different as well (Hosking
et al., 2013), with the simulation results of each month
varying greatly between different models (Hosking et al., 2013;
Shu et al., 2015).

The biases in the simulated Antarctic Sea ice concentration
and thickness may be potentially attributed to several physical

processes, part of which is associated with the atmosphere-
sea ice-ocean interactions (Turner et al., 2015; Meehl et al.,
2016; Schroeter et al., 2017; Chemke and Polvani, 2020).
To understand the reasons of the biases and the diversity
of the simulated Antarctic Sea ice, we evaluate the sea ice
mass budget in 15 Sea-ice Model Intercomparison Project
(SIMIP) models under the CMIP6 project. In particular, we
focus on the multi-model mean and the inter-model-spread
of eight individual contributors of the sea ice mass budgets
(Notz et al., 2016), including the basal growth terms, the
frazil ice formation terms, the snow ice terms, the dynamic
terms, the lateral melting terms, the basal melting terms, the
top melting terms and the evaporation terms (the definitions
of the Antarctic Sea ice mass budget terms are listed
in Table 1).

The rest of this paper proceeds with the following parts. The
second part is a description of the selected data and models. The
third part is the intercomparison of the Antarctic Sea ice area and
mass simulation in CMIP6. The fourth part is the representation
of the mean mass budgets in Antarctica. In the fifth part, we
summarize the main findings of this work with an outlook. The
last part is the discussion of this paper.

DATA AND METHOD

In this study, 15 models are selected to compare changes in
the physical processes of each contributors of the Antarctic
Sea ice mass balance. Details of these models are listed in
Table 2. The results of these models are downloaded from
the SIMIP historical simulations1. Detail calculation method of
each sea ice variables are shown in Vancoppenolle et al. (2009).
To further study the sea ice balance over different regions
around Antarctica, we divided the Southern Ocean into five
sectors (Figure 1C): the Indian Ocean (IO) sector, (25–90◦E),
the Western Pacific Ocean (WP) sector (90–150◦W); the Ross
Sea (RS) sector (150–145◦W); the BAS sector (145–60◦W);
and the Weddell Sea (WS) sector (60–25◦E). The names and
detailed information of each factors of the sea ice mass budgets
are listed in Table 1, following the definition of Notz et al.
(2016). In this study, we also used satellite-based observations
of the sea ice concentrations as a reference. The Sea ice
Concentration data are the merged satellite data from GSFC
NASA Team/Bootstrap, from January 1979 to December 2014
(NSIDC) (Meier et al., 2017)2. In terms of sea ice mass, there is no
long-term observational data available; therefore, this paper uses
the multi-model mean as a benchmark for comparing simulated
differences in sea ice mass.

The type of contributors and factors that affect sea ice change
can be simply classified according to whether it forms or melts
the sea ice. The basal growth processes, the frazil ice formation
processes and snow ice processes are the three terms of sea ice
formation (Singh et al., 2020). Because of the snow cover and the
low sea surface temperature in the Antarctic region, all three sea

1https://esgf-node.llnl.gov/projects/cmip6/
2https://nsidc.org/data/G02202/versions/3#goddard-merged-monthly-cdr-var
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TABLE 1 | Definitions of the Antarctic sea ice mass budget items.

Mass budgets Defined

Dynamics The change of sea ice amount due to dynamic process.

Evapsubl The melt of sea ice amount due to evaporation and sublimation.

Basal growth Sea-ice amount change due to vertical growth of existing sea ice

Frazil ice formation The growth of sea ice amount in supercooled open water

Lateral melt The tendency of melting through lateral melting

Basal melt The tendency of melting through bottom melting

Top melt The tendency of melting of sea ice at the surface of sea ice

Snow ice Sea ice mass change due to transformation from snow to sea ice

TABLE 2 | Information about all CMIP6 models used in this study, including summaries of model subcomponents and resolutions (sea ice).

Model Name Sea ice modules Ocean modules Atmosphere modules resolution (unit 1) Notes

CESM2 CICE5.1 POP2 CAM6 320 × 384

CESM2-FV2 CICE5.1 POP2 CAM6 320 × 384

CESM2-WACCM CICE5.1 POP2 CAM6 320 × 384

CESM2-WACCM-FV2 CICE5.1 POP2 CAM6 320 × 384

CNRM-CM6-1 Gelato 6.1 Nemo 3.6 Arpege 6.3 362 × 294

MRI-ESM2-0 MRI.COM4.4 MRICOM4.4 MRI-AGCM3.5 360 × 364 Missing: lateral melt

NorESM2-LM CICE MICOM CAM-OSLO 360 × 384

NorESM2-MM CICE MICOM CAM-OSLO 360 × 384

HadGEM3-GC31-LL CICE-HadGEM3-GSI8 NEMO-HadGEM3-GO6.0 MetUM-HadGEM3-GA7.1 360 × 330

HadGEM3-GC31-MM CICE-HadGEM3-GSI8 NEMO-HadGEM3-GO6.0 MetUM-HadGEM3-GA7.1 1440 × 1205

IPSL-CM6A-LR NEMO-LIM3 NEMO-OPA LMDZ 362 × 332 Missing: lateral melt

EC-Earth3 NEMO-LIM3 NEMO3.6 IFS cy36r4 362 × 292 Missing: lateral melt

GISS-E2-1-G GISS SI GISS Ocean GISS-E2.1 288 × 180 Missing: dynamics

GISS-E2-1-G-CC GISS SI GISS Ocean GISS-E2.1 288 × 180 Missing: dynamics

GISS-E2-1-H GISS SI GISS Ocean GISS-E2.1 288 × 180 Missing:dynamics

CNRM-CM6-1 Gelato 6.1 Nemo 3.6 Arpege 6.3 362 × 294

Information of the missing items is listed in the last column.

ice formation processes account for a considerable proportion of
the ice growth. The frazil ice formation is a complex phenomenon
caused by the supercooling of the sea water (Osterkamp and
Gosink, 1983). Meanwhile, the snow on top of the Antarctic Sea
ice affects the sea ice formation, as the weight of snow causes the
sea ice to sink and thus accelerates snow-to-ice transformation
(Maksym and Markus, 2008). The ice growth is also caused by
the vertical growing processes at the bottom of the sea ice (basal
growth processes). The other four terms, except for the dynamical
process, all lead to sea ice dissipation. The snow cover also slows
down the surface melting processes of the sea ice; therefore,
Antarctic Sea ice melts mostly at the bottom. The dynamic
processes only affect the transport of sea ice in the Antarctica.
The influence of the dynamic processes (causing sea ice growth
or decline) is determined by the regions of sea ice.

The box and whisker plot gives a quantification of the diversity
between Antarctic mass budget terms. The box is drawn from the
25th percentile of the datasets (the first quartile,Q1) to the 75th
percentile of the datasets (the third quartile,Q3). The difference
between the Q3 and Q1 is referred to as the interquartile range
(IQR), which can be used to define outliers with exceeding
the range between Q3+1.5 × IQR and Q1−1.5 × IQR. Upper
and lower whiskers are the highest and the lowest data point

excluding outliers respectively. The difference between the upper
whisker and the lower whisker represent the full inter-model
diversity of the Antarctic mass budget terms.

VARIABILITY OF THE ANTARCTIC SEA
ICE AMONG CMIP6 MODELS

Both the area and the total mass of the Antarctic Sea ice show
clear seasonal features. As shown in Figures 1A,B, the Antarctic
Sea ice extent usually reaches its lowest value in February, with
a total area of ∼2.2 million km2, and the maximum extent in
September, with the total area of about 16.4 million km2.

We compare the simulated Antarctic Sea ice area of CMIP6
models with the observations. A low bias of the total sea ice
area (thick blue curve in Figure 2) appears in all models in
February, compared to the observations (thick black curve in
Figure 2). Most models can simulate multi-year ice in the WS
and RS, but the sea ice in the BAS will not reproduce the
extent as we see in the satellite data in February (Figure 3). The
diversity among different models increases in September. The
September sea ice areas are higher than the observation in only
two models (IPSL-CMA6-LR and MRI-ESM2-0), with all other
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FIGURE 1 | (A) The annual mean sea ice concentration (unit:1) from the NSIDC satellite observation data for 1979–2014 in February [(B) is in September]. According
to the trend, the South Pole is divided into five sectors, and their names and ranges of the sectors are shown in panel (C).

models showing a smaller sea ice area, and the sea ice area in
NorESM2-LM, NorESM2-MM, HadGEM3-GC31-MM, and EC-
Earth3 are even less than 75% of the observation. Most models
(the panels 1–4, 6–9, 11–15 in the Figure 4) suffer from a low-
bias of the sea ice concentration over the IO sector in comparison
to the observation (panel 16 in Figure 4), with the above four
models (panel 6, 7, 9, 11 in Figure 4) suffering from a severer sea
ice bias over the WS sector.

As shown in Figure 5, the sea ice mass of the CMIP6 models
is also compared with the multi-model mean. The simulated
sea ice mass in some models, such as EC-Earth3, GISS-E2-1-G,
GISS-E2-1-G-CC, and CNRM-CM6-1 is lower than 75% of the

multi-model mean (thick blue curve in Figure 5) in every month.
The October sea ice mass in only one model (IPSL-CMA6-LR) is
higher than 125% of that of the observation. The February sea ice
mass results show a smaller diversity among most of the models
(the models with sea ice mass higher than 75% of observations).

Above all, both the area and the total mass reach their lowest
value in summer, and their maximum value in spring. However,
some models with larger sea ice area tend to have relatively thin
sea ice (such as MRI-ESM2-0 GISS-E2-1-G, GISS-E2-1-G-CC,
and CNRM-CM6-1) or the other way around (such as NorESM2-
LM, NorESM2-MM, and HadGEM3-GC31-MM). As a result,
the models with higher sea ice areas (the dark green curve, the
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FIGURE 2 | The seasonal cycles of Antarctic Sea ice area from 1979 to 2014 for CMIP6 models (The bold black line represents satellite observations provided by
the NSIDC, whereas the thick blue line indicates multi-model means result).

light brown curve, the light green curve and the orange curve
in Figure 2) may not always have higher sea ice mass (the same
curves in Figure 5).

CMIP6 MEAN SEA ICE MASS BUDGET IN
ANTARCTICA

We first estimate the contributions of each sea ice formation
and melting term to the total Antarctic Sea ice mass budget.
Because of the lack of observations of the sea ice mass budget, we
quantify the relative importance of each factor using the multi-
model mean and evaluate the uncertainty of each factor using
the inter-model spread. Three processes contribute to the ice
growth, including the basal growth terms, the frazil ice formation
terms, and the snow ice terms. In these factors, the basal growth
dominates the sea ice increase over the Antarctic (Figure 6),
which accounts for ∼50% (ranging from ∼26% to ∼80% among
different models) of the total growth. The effects of the other

two factors are comparable. The frazil ice formation accounts
for ∼26% (∼5% to ∼48%) of the total sea ice increase, with
snow ice processes accounting for ∼24% (∼0.6% to ∼33%). The
ice dissipation is controlled by four other processes, namely the
lateral melting term, the top melting term, the basal melting term
and the evaporation term. Among these factors, ∼89% (∼36% to
∼97%) of the annual mean ice loss is caused by the basal melting
process, and ∼5% (∼0.3% to ∼64%) by melting at the ice surface.
The lateral melting only account for ∼4% (∼0.07% to ∼13.5%)
of the ice loss, with the evaporation processes accounting for less
than 1% (∼0.01% to ∼6.4%).

We further evaluate the diversity of each factor among
different models, which represents, to some extent, the
uncertainty of these growth and melting processes. Three factors,
including the basal melting process, the snow ice process
and the top melting process, show a larger diversity among
different models. The basal melting term of the multi-model
mean is about −19.9 ± 3.4 × 103 (95% confidence interval)
Gt/year. The difference between the maximum (upper whisker)
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FIGURE 3 | The mean sea ice concentration (unit:1) from CMIP6 models in February (the month with the smallest sea ice area) in the Southern Hemisphere from
1979 to 2014. The last panel (16) indicates the NSIDC satellite observation results.

and the minimum (lower whisker) amount of sea ice loss
produced by the basal melting is about −21.0 × 103 Gt/year,
reaching 105% of the multi-model mean. The diversity in
snow ice process is even larger compared to the basal melting
process. The multi-model mean snow ice process is about
4.8 ± 2.0 × 103 Gt/year. The difference between the models
with the strongest snow ice process and those with the weakest
is 12.0 × 103 Gt/year, reaching 250% of the multi-model mean.
The value of the multi-model mean top melting term is about
−1.27 ± 0.87 × 103 Gt/year, with the range between the strongest

and the weakest models of reaching about 350% of the multi-
model mean (−4.45 × 103 Gt/year).

In addition, the sea ice formation and melting processes
of some models are considered as an outlier. The outliers
usually refer to the models with Antarctic Sea ice mass
budget exceeding the range between Q3+1.5 × IQR and
Q1−1.5 × IQR. These outliers are also evaluated, as shown
in Figure 6. Three factors, including the basal growth, the
frazil ice formation and the top melting terms have outlier
models. The multi-model mean basal growth process in CMIP6
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FIGURE 4 | The mean sea ice concentration (unit:1) from CMIP6 models in September (the month with the biggest sea ice area) in the Southern Hemisphere from
1979 to 2014. The last panel (16) indicates the NSIDC satellite observation results.

is about 10.2 ± 0.8 × 103 Gt/year. The basal growth process
in EC-Earth3 is 3.4 × 103 Gt/year, less than 34.5% of the
multi-model mean. The basal growth term in GISS-E2-1-H is
25.7 × 103 Gt/year, higher than 151% of the multi-model mean,
while that of the CNRM-CM6-1 reaches 61.3 × 103 Gt/year,
higher than 600% of the multi-model mean. The value of
the multi-model mean frazil ice formation process is about
5.2 ± 0.4 × 103 Gt/year. The frazil ice formation term in

MRI-ESM2 (IPSL-CM6A-LR) is about 10.9 × 103 Gt/year
(14.4 × 103 Gt/year), reaching 210% (280%) of the multi-model
mean. The top melting process of the multi-model mean is
about −1.27 ± 0.87 × 103 Gt/year. The top melting term in
the GISS-E2-1-H is about −12.3 × 103 Gt/year, larger than
960% of the multi-model mean, while that of the CNRM-
CM6-1 is even higher than 39 times of the multi-model mean
(−50 × 103 Gt/year).
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FIGURE 5 | Seasonal cycles of Antarctic sea ice mass from 1979 to 2014 for CMIP6 models. The thick blue line indicates multi-model mean.

We further quantify the diversity of each CMIP6 model from
the multi-model mean values, to further classify the simulation
skill of these CMIP models in reproducing each sea ice formation
and melting processes, as well as the agreement between different
models, as shown in Table 3 and Figure 7. In Table 3, those
terms (of each model) within (±) one standard deviation from
the multi-model mean value are marked as green, with those
terms larger than +1 standard deviation marked in red, and those
smaller than −1 standard deviation marked in blue. In addition,
the terms with a very large difference from the multi-model
mean are considered as outliers (similar to those in Figure 6)
and marked in black (the RMSE of each model compared to
the multi-model mean are also showed in Table 3). The panels
in Figure 7 with “!” indicate the models with at least one
mass budget term (s) higher or lower than (±) one standard
deviation, with “∗” representing those models (the models with
black numbers in Table 3) have one or more outlier terms.
Largest uncertainty among different models appears in two terms,
namely the snow ice and the basal melting, with four and five

models (in 15) out of one standard deviation from the multi-
model mean. The snow ice terms in the CNRM-CM6-1 are larger
than +1 standard deviation from multi-model mean, while that
of the three GISS models are less than −1 standard deviation (the
RMSE of these four models are larger than 5.1 × 103 Gt/year).
On the other hand, the values of the basal melting terms in
the CNRM-CM6-1 and the IPSL-CM6A-LR are also higher than
+1 standard deviation from multi-model mean, while those of
the GISS-E2-1-G, GISS-E2-1-G-CC, and EC-Earth3 are smaller
than −1 standard deviation (the RMSE of these five models
are larger than 8.1 × 103 Gt/year). All mass budget terms in
the CESM models, NorESM2-LM, NorESM2-MM, HadGEM3-
GC31-MM, and HadGEM3-GC31-LL are within one standard
deviation from the multi-model mean. In most of these models,
the ice formation is dominated by basal growth term, as revealed
above using the multi-model mean values. However, in EC-
Earth3, IPSL-CM6A-LR, and MRI-ESM2-0, the largest ice growth
term is the frazil ice formation, highlighting the uncertainty in
the ice formation processes around Antarctica, which require
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further investigation with the development of both models and
observations. As revealed above, several models have outlier
terms in basal growth, the frazil ice formation and the top
melting processes. In contrast, good agreements appear in these
processes among the other models (green). In particular, the
CNRM-CM6-1 suffers from two outlier terms in the basal growth
and the top melting processes, while the snow ice and the
basal melting terms of this model also exceeding the range
of the ±1 standard deviation from the multi-model mean.
The positive bias in the basal growth and the snow ice terms

may balance the negative bias of the top/basal melting terms
in the CNRM-CM6-1.

We further evaluate the correlation between most of the mass
budget terms (the terms with large diversity or great contribution
to the sea ice change as discussed above) and the Antarctic Sea
ice area, as shown in Table 4. The terms of each model with
P-value less than 0.05 (statistically significant) are marked in
green, whereas other terms are marked in red. The correlation
coefficients between the basal growth/melting and sea ice area are
statistically significant in all models. The basal growth terms and

FIGURE 6 | The annual mean values of the multi-model mean sea ice mass budget in the Antarctic. The data are summed over the area south of the 45◦S for the
period of 1979 to 2014. The black diamonds represent outliers. The name of each of these model is given in Table 2.

TABLE 3 | The mass budgets (unit: Gt × 103) for each model.

Basal growth Frazil ice formation Snow ice dynamics Lateral melt Basal melt Top melt Evapsubl

1. CESM2 10.94094 5.02369 7.59394 −2.03E-08 −0.69502 −22.74094 −0.18217 −0.01404

2. CESM2-FV2 10.95532 4.855 7.86413 −3.01E-08 −0.75866 −22.71025 −0.20799 −0.01383

3. CESM2-WACCM 11.35951 5.01045 7.95043 −2.79E-08 −0.72158 −23.45153 −0.18919 −0.01547

4. CESM2-WACCM-FV2 10.76029 4.91383 7.46081 3.18E-08 −0.74466 −22.23382 −0.23854 −0.01449

5. MRI-ESM2-0 8.47579 10.85997 3.75826 2.62512 Missing −24.9128 −0.81367 −0.0167

6. NorESM2-LM 8.90474 6.22625 5.024 −9.72E-08 −0.72064 −19.3456 −0.08698 −0.02298

7. NorESM2-MM 9.33534 6.09835 5.07152 −1.54E-07 −0.7352 −19.70063 −0.07637 −0.02441

8. HadGEM3-GC31-LL 12.9701 4.01347 2.22719 −0.07495 −0.5532 −16.21422 −2.48323 −0.60087

9. HadGEM3-GC31-MM 11.20828 4.25666 1.72316 −0.09271 −0.57701 −14.82606 −1.6261 −0.42409

10. IPSL-CM6A-LR 10.89411 14.44402 7.77379 0.21461 Missing −31.8792 −1.36765 −0.07293

11. EC-Earth3 3.43515 6.12684 3.30066 0.16581 Missing −12.49665 −0.47339 −0.02989

12. GISS-E2-1-G 8.57 5.68982 0.12174 Missing −2.53638 −11.30096 −4.52402 −1.25568

13. GISS-E2-1-G-CC 8.13368 5.55761 0.11693 Missing −2.46023 −10.86453 −4.28791 −1.20907

14. GISS-E2-1-H 25.73849 6.16614 0.20446 Missing −5.03678 −18.65647 −12.32302 −1.26467

15. CNRM-CM6-1 61.34817 4.25601 12.08859 −2.69E-04 −0.05577 −27.77802 −50.07774 −0.01279

Multi-models mean 14.202 6.23321 4.81864 −0.23647 −1.2996 −19.94078 −5.26386 −0.33279

Standard deviation ±13.8548 ±2.78967 ±3.59207 ±0.75727 ±1.39556 ±6.0728 ±12.80239 ±0.50187
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TABLE 3 | continued. the RMSE (unit: 1) of each model compared to the multi-model mean.

Basal growth Frazil ice formation Snow ice Dynamics Lateral melt Basal melt Top melt Evapsubl

1. CESM2 6.689276 1.150947 2.316367 0.177537 0.289261 2.344901 8.248435 0.29956

2. CESM2-FV2 6.683793 1.311089 2.561786 0.177537 0.226747 2.329713 8.222599 0.299755

3. CESM2-WACCM 6.275823 1.154264 2.655254 0.177537 0.261036 2.971292 8.242819 0.298126

4. CESM2-WACCM-FV2 6.86229 1.24297 2.15746 0.177537 0.239812 1.920631 8.191128 0.299041

5. MRI-ESM2-0 9.142233 4.741315 1.645627 2.450674 0.980337 4.414002 7.61545 0.296846

6. NorESM2-LM 8.721791 0.273291 0.501099 0.177537 0.264724 1.554028 8.342715 0.290595

7. NorESM2-MM 8.308365 0.342824 0.518004 0.177537 0.254171 1.52853 8.35394 0.289209

8. HadGEM3-GC31-LL 4.709129 2.134459 3.145649 0.252421 0.42829 4.554385 5.951943 0.296588

9. HadGEM3-GC31-MM 6.424608 1.885424 3.648275 0.270222 0.404853 5.871454 6.810483 0.115364

10. IPSL-CM6A-LR 6.745886 8.328932 2.547203 0.040904 Missing 11.42019 7.063696 0.240667

11. EC-Earth3 14.18721 0.457048 2.115268 0.037489 Missing 8.259566 7.958565 0.283872

12. GISS-E2-1-G 9.070392 0.506313 5.247646 Missing 1.561362 9.395316 3.971445 0.944667

13. GISS-E2-1-G-CC 9.497256 0.609501 5.252334 Missing 1.484714 9.822138 4.17904 0.898284

14. GISS-E2-1-H 8.424462 0.416065 5.164716 Missing 4.07899 2.863657 4.059438 0.962415

15. CNRM-CM6-1 47.45534 1.666817 7.495336 0.177822 0.915684 8.983934 44.56499 0.300265

FIGURE 7 | Annual mean of sea ice mass budget in the Antarctic for the period of 1979–2014, for each model. The data are summed over the area south of the
45◦S. The “!” indicate the models with at least one mass budget term(s) higher or lower than ± one standard deviation. The “*” indicates that mass budget of the
model has outliers.

the ice area have a strong positive correlation among all models,
with the HadGEM3-GC31-LL showing the highest correlation
coefficient, reaching 0.98. The correlation coefficient of the basal
growth is the lowest in the NorESM2-LM, still reaching 0.52.
Meanwhile, the basal melting terms and the ice area have a strong

negative correlation in all models. The correlation coefficient
between basal melting terms and ice area ranges from −0.5
(NorESM2-LM) to −0.94 (HadGEM3-GC31-LL). However, the
correlation coefficients for frazil ice formation are not statistically
significant in the CESM2, CESM2-FV2, and NorESM2-MM,
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TABLE 4 | The correlation coefficient (unit: 1) between representative mass budgets (the mass budgets terms with a great contribution to the sea ice change or the
terms with a large diversity) and the sea ice area for each model.

Models Basal growth Frazil ice formation Snow ice Basal melt Top melt

1. CESM2 Correlation 0.72692 0.148835 0.6438 −0.69599 −0.15677

P-value 5.15E-07 0.386308 2.27E-05 2.44E-06 0.361187

2. CESM2-FV2 Correlation 0.63699 −0.08176 0.511276 −0.54425 0.027992

P-value 2.95E-05 0.635465 0.001439 0.000601 0.871263

3. CESM2-WACCM Correlation 0.763134 0.350688 0.566575 −0.72797 0.202808

P-value 6.24E-08 0.035995 0.000315 4.87E-07 0.235512

4. CESM2-WACCM-FV2 Correlation 0.725069 0.368754 0.382413 −0.63496 −0.39223

P-value 5.69E-07 0.026892 0.021348 3.19E-05 0.017981

5. MRI-ESM2-0 Correlation 0.743387 0.821598 0.644109 −0.75053 −0.20946

P-value 2.06E-07 8.21E-10 2.25E-05 1.36E-07 0.220169

6. NorESM2-LM Correlation 0.522283 0.370113 0.310728 −0.50123 −0.0379

P-value 0.001085 0.026292 0.065106 0.001846 0.826275

7. NorESM2-MM Correlation 0.84383 0.320868 0.399201 −0.65345 −0.32402

P-value 1.02E-10 0.056383 0.01587 1.55E-05 0.053871

8. HadGEM3-GC31-LL Correlation 0.979554 0.934315 0.723403 −0.93861 −0.7977

P-value 2.91E-25 8.49E-17 6.21E-07 2.78E-17 5.71E-09

9. HadGEM3-GC31-MM Correlation 0.960617 0.905587 0.829275 −0.92547 −0.3903

P-value 1.74E-20 3.23E-14 4.14E-10 6.78E-16 0.018604

10. IPSL-CM6A-LR Correlation 0.8417 0.708007 0.689397 −0.81539 0.147476

P-value 1.27E-10 1.37E-06 3.32E-06 1.40E-09 0.390706

11. EC-Earth3 Correlation 0.805976 0.864139 0.686011 −0.75571 −0.37414

P-value 3.01E-09 1.13E-11 3.87E-06 9.91E-08 0.02458

12. GISS-E2-1-G Correlation 0.740637 0.637445 0.672383 −0.57716 −0.62348

P-value 2.41E-07 2.90E-05 7.07E-06 0.000229 4.86E-05

13. GISS-E2-1-G-CC Correlation 0.793317 0.724975 0.716092 −0.70774 −0.46163

P-value 7.93E-09 5.71E-07 9.09E-07 1.38E-06 0.004596

14. GISS-E2-1-H Correlation 0.93402 0.897407 0.730779 −0.83598 −0.89577

P-value 9.14E-17 1.24E-13 4.18E-07 2.21E-10 1.61E-13

15. CNRM-CM6-1 Correlation 0.830028 0.837264 0.547003 −0.80543 −0.76637

P-value 3.86E-10 1.96E-10 0.000556 3.14E-09 5.08E-08

Among them, green number indicates that the P-value of the mass budget term is less than 0.05, which also mean that the results are statistically significant. The red
number means the opposite.

with other models ranging from 0.35 (CESM2-WACCM) to
0.93 (HadGEM3-GC31-LL). The correlation coefficients of snow
ice terms are not statistically significant in the NorESM2-
LM as well, whereas in other models they range from 0.38
(CESM2-WACCM-FV2) to 0.83 (HadGEM3-GC31-MM). The
correlation coefficients of top melting terms are not statistically
significant in seven models (the models in red), with other models
ranging from −0.37 (EC-Earth3) to −0.89 (GISS-E2-1-H).

Figure 8 shows the seasonal cycles of the multi-model
mean mass budget terms, during the period from 1979 to
2014. The black line shows the tendency of the total ice mass
for each month, illustrating a net ice melt from September
to February (Figure 8, black curve less than 0), and a
net ice growth from March to August (larger than 0). The
maximum value of ice formation occurs in May. Most of
terms have similar seasonal cycle as the total sea ice melt
and formation term (black line). However, the seasonal cycle
of the basal growth/melt (Figure 8, blue/dark green curves)
and the snow ice (yellow curve) terms show different cycles
from that of the total tendency (black curve), with a clear

phase shift. This is because the basal growth/melting processes
and the snow ice processes happen on the upper-bottom
surface of the sea ice, making them depending critically on
the total area of the Antarctic Sea ice. In the austral summer,
when the total sea ice area is relatively small, the total
growing (melting) rates of these terms are also reduced and
vice versa.

We further estimate the seasonality of these mass budget terms
in each CMIP6 model, as shown in Figure 9. The peak season
of the frazil ice formation and the basal growth usually occur
in the same season in each model. In the CESM model, the
GISS-E2-1-G and the GISS-E2-1-G-CC, the peak season of the
basal growth and the frazil ice formation terms appear in May,
whereas the other models appear in July. The bottom melting
processes of NorESM2-LM, NorESM2-MM, GISS-E2-1-G, GISS-
E2-1-G-CC, and EC-Earth3 begin to slow down after the austral
spring. This could explain why the annual mean of the basal
melting terms of these models is weaker than that of the other
models. The seasonal cycle of the mass budget terms of CNRM-
CM6-1 and GISS-E2-1-H is quite different compared to the other
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FIGURE 8 | The seasonal cycle of the multi-model mean sea ice mass budget in the Antarctic. The value is summed over the area south of the 45◦S for the period
of 1979–2014.

models. However, in each month, The positive bias in the basal
growth terms may neutralize the strong negative bias of the
basal/top melting terms in the GISS-E2-1-H and the CNRM-
CM6-1.

Overall, the basal growth terms dominate the sea ice increase
over the Antarctic, with the snow ice process and the frazil
ice formation also showing a large contribution. The largest
contributor of the sea ice loss is the basal melting terms. Three
factors, namely the basal melting process, the snow ice process
and the top melting process, show a larger diversity among
different models. The difference between the results of the models
with the strongest basal melting process and those with the
weakest reaches 105% of the multi-model mean, while that of
the snow ice terms and the top melting terms reaches 250% and
350%, respectively. The outliers of the CMIP6 models mainly
appear in the basal growth, the frazil ice formation and the top
melting terms. The basal growth process in EC-Earth3 is less than
34.5% of the multi-model mean, while that of the GISS-E2-1-H
and the CNRM-CM6-1 is higher than 151% and 600% of the
multi-model mean, respectively. The frazil ice formation term in
MRI-ESM2 (IPSL-CM6A-LR) reaches 210% (280%) of the multi-
model mean. The top melting term in the GISS-E2-1-H is larger
than the 960% of the multi-model mean, while that of the CNRM-
CM6-1 is even higher than 39 times of the multi-model mean.

As shown in Figure 2, most models can well reproduce the
annual Antarctic Sea ice change, but the difference is distinct
between the models in September. The September sea ice areas
are higher than observation in only two models (IPSL-CMA6-LR
and MRI-ESM2-0). As discussed above, the frazil ice formation
processes of the IPSL-CM6A-LR and the MRI-ESM2-0 models
are considered as outliers. However there are no outliers in
the melting terms of the IPSL-CM6A-LR and the MRI-ESM2-
0 to balance the diversity on the formation terms, which may
cause the positive bias of the sea ice area of these models.
The sea ice area in NorESM2-LM, NorESM2-MM, HadGEM3-
GC31-MM, and EC-Earth3 is less than observation in September.
As shown in the Figure 7 and Table 3, the basal growth of
the EC-Earth3 are less than 34.5% of the multi-model mean.
The bottom melting processes of NorESM2-LM, NorESM2-MM,
and EC-Earth3 begin to slow down after the austral spring
(Figure 9), which may also cause the low bias in the sea ice area
of these models.

We further evaluate the diversity of each factor among
different sea ice modules, as shown in Table 2 and Figure 7.
The total ice growth is dominated by the frazil ice formation
term in the models with NEMO-LIM3 and MRI.COM4.4
sea ice modules, such as the MRI-ESM2-0, EC-Earth3, and
the IPSL-CM6A-LR, while those of the other models are
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FIGURE 9 | The seasonal cycle of monthly mean sea ice mass budget in the Antarctica, for the period of 1979–2014 for each model. The values are summed over
the area south of the 45◦S.

dominated by the basal growth processes. All mass budget
terms in the CESM models, NorESM2-LM, NorESM2-
MM, HadGEM3-GC31-MM, and HadGEM3-GC31-LL are
within one standard deviation of the multi-model mean,
which also correspond to the models with CICE sea ice
module. As revealed above, the diversity of the GISS
models and the CNRM-CM6-1 is quite large compared
to the other models. The sea ice module of the GISS
models and the CNRM-CM6-1 is different from most of
the CMIP6 models as well.

We also investigate the regionality of each sea ice formation
and melting terms in the CMIP6 models by calculating the

contribution of these processes among different sectors, as shown
in Figure 10. The Antarctic Sea ice formation is still dominated
by basal growth term in each sector. The contribution of the
basal growth term varies considerably among different sectors,
with the RS sector showing the highest contribution, accounting
for ∼56% of the total growth. The contribution of the basal
growth is the lowest in the WP sector, reaching ∼40% of the
total growth. The contribution of frazil ice formation accounts
for ∼20.6% (WS) to ∼35.2% (BAS) of the total ice growth, with
snow ice process ranging for ∼20.2% (RS) to ∼27.5% (IO). The
ice loss of each sector is still dominated by the basal melting
terms. Among different sectors, ∼74.8% (RS) to ∼90.8% (WS)
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of ice loss is caused by the basal melting. The contribution of the
dynamic process is quite large in the WS and the RS sectors. In the
WS sector, the dynamic process causes ice formation, accounting
for 13.2% of the total ice increase, whereas in the RS sector, the
dynamic processes cause an ice decline, accounting for 14.1% of
the total ice loss, which represent strong ice transportation among
these sectors. On the other hand, the contribution of the dynamic
process in the WP, BAS, and IO sectors only account for less than
5.7% of the total sea ice change.

We further evaluate the diversity of each factor among
different sectors. As discussed above, three processes (the
snow ice process, the basal melting processes and the top
melting process) show large diversity among different models
around Antarctica. The uncertainty of the basal melting and
the snow ice processes are the largest in the WS sector. The
multi-model mean basal melting process in WS sector is about
−65.5 ± 14.5 × 102 Gt/year. The diversity between the maximum
and the minimum amount of sea ice loss produced by the
basal melting reaches −87.3 × 102 Gt/year in the WS sector,
higher than 133% of the multi-model mean. The multi-model
mean value of the snow ice process in the WS sector reaches
13.6 ± 6.3 × 102 Gt/year. The difference between the models with
the strongest snow ice process and those with the weakest is about
41.2 × 102 Gt/year in the WS sector (303% of the multi-model

mean). The largest diversity of the top melting process appears in
the IO sector. The multi-model mean value of the top melting
term is about −2.3 ± 2.1 × 102 Gt/year, while the difference
between the strongest and the weakest models is about 547%
(−12.9 × 102 Gt/year) of the multi-model mean in the IO sector.

We also identify outliers of the Antarctic Sea ice mass budget
terms among different sectors. The black and red diamonds in
Figure 10 represent the outlier models of these sectors (the black
ones show the outliers of the entire Antarctic, same as those
in Figure 6). Three factors, including the frazil ice formation,
the basal melting and the dynamic processes have additional
outliers (red diamond) in different sectors. The multi-model
mean frazil ice formation is about 13.7 ± 1.5 × 102 Gt/year
in the WS sector. The frazil ice formation term in the EC-
Earth3 is about 25.6 × 102 Gt/year (WS), reaching 188% of the
multi-model mean. In the RS sector, the value of multi-model
mean basal melting terms reaches −38.1 ± 3.9 × 102 Gt/year.
The basal melting terms of the IPSL-CM6A-LR (the CNRM-
CM6-1) is about −62.2 × 102 Gt/year (−58.2 × 102 Gt/year)
in the RS sector, higher than 163% (152%) of the multi-model
mean. The dynamic process of the multi-model mean is about
−7.2 ± 1.5 × 102 Gt/year in the RS sector. The dynamic
terms in the RS sector of the HadGEM3-GC31-MM is about
−16.0 × 102 Gt/year, reaching 222% of the MMM.

FIGURE 10 | Annual mean (multi-model mean) sea ice mass budget in the different sectors, for the period of 1979–2014. A red diamond indicates a new outlier in
the area.
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Above all, the mass budget terms of Antarctic Sea ice show
more diversity after being divided into five sectors, with the
proportions and uncertainties varying considerably from sector
to sector. The uncertainties of the snow ice term and the
basal melting term are quite large in the WS sector, while the
greatest diversity of the top melting process appears in the IO
sector. In the dynamic process, the RS and the WS sectors
have a broad agreement on Sea ice change between different
models, which causes ice growth in the WS sector and ice loss
in the RS sector.

CONCLUSION

In this study, we quantify the relative importance of each growth
and melting process in the Antarctic Sea ice mass balance using
SIMIP simulation results of 15 CMIP6 models. We then evaluate
the uncertainty of these simulated factors by examining the
diversity of these factors among different models, and further
investigate the seasonality and regionality of these processes.

Results show that the largest contributor of the sea ice increase
is the basal growth term, which reaches 10.2 ± 0.9 × 103 Gt/year
among different models, and contributes to ∼50% of the
total annual-mean sea ice growth. The basal growth terms
and the ice area have a strong positive correlation among
all CMIP6 models in the Antarctica, while the basal melting
terms show a strong negative correlation. The correlation
coefficients between the frazil ice formation (or the snow ice
terms) and the ice area are positive as well in most of the
models. Additionally, the snow ice and frazil ice formation
account for a considerable proportion of the ice growth, causing
a sea ice increase of 5.2 ± 0.4 × 103 Gt/year (∼23.7%)
and 4.8 ± 2 × 103 Gt/year (∼26%), respectively. On the
other hand, the basal melting dominates the sea ice retreat
processes by contributing to −19.9 ± 3.4 × 103 Gt/year of
the total sea ice mass budget, and accounting for ∼88.5%
of the total annual-mean sea ice loss. The remaining melting
terms, such as the top melting terms, the lateral melting
and the evaporation only account for ∼5.7%, ∼4.3%, and
1.5%, respectively.

We further evaluate the uncertainty of each process by
calculating the inter-model spread of these terms. There is a
good agreement of the contribution of each ice-mass budget
terms between different models over the Arctic ocean (Keen
et al., 2021). In contrast, strong diversity of these sea ice mass
budget terms appears between different CMIP models over the
Antarctic region, implying the uncertainty of the Antarctic Sea ice
formation and melting processes in the state-of-the-art climate
models. The largest uncertainties of the mass budget terms are
the basal melting process, the snow ice process and the top
melting process. The difference between the upper and the lower
whiskers in the basal melting terms are greater than 105% of
the multi-model mean, with the snow ice processes reaching
250% of the multi-model mean and the top melting process
reaching 350%.

Some mass budget terms, such as the basal growth terms,
the frazil ice formation terms and the top melting terms have

outlier models (usually refer to the models with Antarctic Sea
ice mass budget exceeding the range of Q3+1.5 × IQR to
Q1−1.5 × IQR), indicating that the term in one model is
very different from that of the other models. For example,
in the models with NEMO-LIM3 and MRI.COM4.4 sea ice
modules, such as IPSL-CM6A-LR, the MRI-ESM2-0, and the
EC-Earth3, the total ice growth is dominated by the frazil
ice formation term, while in other models it is dominated by
the basal growth processes. The September sea ice areas of
the IPSL-CMA6-LR and MRI-ESM2-0 are higher than those
in observation, while that of the EC-Earth3 are less than
75% of the observation. It is interesting that in the GISS-E2-
1-H and the CNRM-CM6-1 model, the basal growth terms
are significantly overestimated in comparison with the other
models, while the top melting terms are largely underestimated.
These two terms balance with each other in these two models.
According to these simulation results, the Antarctic Sea ice mass
budget may be balanced in different ways in different models.
This systematical uncertainty requires further investigation,
to better quantify and to better simulation the Antarctic
Sea ice processes.

The regionality and seasonality of sea ice mass budget terms
are also evaluated in this study. Strong diversity of the snow
ice term and the basal melting term appear in the WS sector,
while the strongest uncertainty of the top melting term appears
in the IO sector. The difference between the maximum and the
minimum value of sea ice loss caused by the basal melting term
in the WS sector reaches 133% of the multi-model mean, while
that of the snow ice process reaches 303% of the multi-model
mean. In the IO sector, the difference between the models with
the strongest top melting process and those with the weakest
reaches 547% of the multi-model mean. The snow ice processes
and the basal melting processes occur on the upper/lower surface
of the sea ice, making them depend critically on the total
area of the Antarctic Sea ice. The bottom melting processes of
NorESM2-LM, NorESM2-MM, GISS-E2-1-G, GISS-E2-1-G-CC,
and EC-Earth3 become weaker after the austral spring, which
may partially contribute to the diversity of this term between
different models.

DISCUSSION

Overall, relatively fewer studies paid attention to the mass budget
of Antarctic Sea ice simulated in the state-of-the art climate
models. At present, due to the lack of long-term observations
of sea ice mass budget, we can only use the spread between
different CMIP6 models to represent the uncertainty of the
simulated Antarctic Sea ice mass budget (Notz et al., 2016).
Our results indicated that, in contrast to that over the Arctic
ocean (Keen et al., 2021), the Antarctic sea ice budget terms
exist strong diversity among different CMIP models, implying
a big uncertainty of the Antarctic Sea ice formation and retreat
processes in these models.

This study are related to many previous research
(Fichefet et al., 2000; Maksym and Markus, 2008;
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Vancoppenolle et al., 2009; Comiso et al., 2017; De Santis et al.,
2017; Keen et al., 2021; Roach et al., 2020; Singh et al., 2020).
The simulation results of the Antarctic Sea ice are consistent
with previous studies of the model with NEMO-LIM3 module
and the CESM2 models (Vancoppenolle et al., 2009; Singh et al.,
2020). The result can be used to explain why the diversity of
Antarctic Sea ice area between different CMIP6 models is larger
than those of the Arctic Sea ice area (Keen et al., 2021; Roach et al.,
2020). The diversity of the sea ice mass budgets in the Antarctic
among different sea ice models is larger than those of the Arctic
as well (Keen et al., 2021). The Factors that influence snow ice
processes and bottom melting processes, such as snowfall and
sea surface temperature, may be responsible for large diversity
of Antarctic Sea ice simulation among different models (Fichefet
et al., 2000; Maksym and Markus, 2008; Comiso et al., 2017). This
study further illustrates the importance of interaction between
atmosphere and the sea ice or between sea ice and the ocean
(Comiso et al., 2017; De Santis et al., 2017). The simulation skill of
these CMIP models in reproducing the snowfall and sea surface
temperature should be further test in the future. Drifting buoys
is a useful tool to measure the sea ice thickness in certain region
(Richter-Menge et al., 2006; Lewis et al., 2011; Wilkinson et al.,
2013; Wever et al., 2020). The study of the ice-mass balance
buoy can be used to determined the interface between the air, the
snow, the ice, and the ocean by measuring sea ice temperatures
(Wever et al., 2020). Due to the limited space of this article,
The comparison between the simulation results of the CMIP6
models and the observation of ice-mass balance buoy will be
studied in the future.

This study also highlights the importance of the improvement
of the sea ice mass budget simulation skill around Antarctica

in future climate models. In particular, continuous observations
of the Antarctic Sea ice thickness and mass badgets is of great
importance in improving the numerical models and thus our
understanding of the Antarctic climate variability.
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