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Abstract
The impacts of internal variability on East Asia–Northwest Pacific (EA–NWP) summer rainfall trends on the multidecadal 
time scale are invested based on three large ensemble simulations, which have ensemble member of 30, 40 and 100. In all 
the three simulations, the summer rainfall trends during 1970–2005 are remarkably diverse across the individual ensemble 
members over the EA–NWP, and the signal-to-noise ratio is lower than 1 over the EA–NWP, suggesting a strong impact of 
internal variability on EA–NWP summer rainfall trends at this interval. Moreover, we found that the diversity of EA–NWP 
summer rainfall trends across individual members has a similar leading spatial pattern in all the three ensembles, featuring 
reverse trends between in Mei-yu region and in the tropical NWP. The leading pattern is likely caused by a gradient between 
the sea surface temperature (SST) trends in the North Indian Ocean (NIO) and in the tropical western Pacific (WP). When 
there is a warming trend in the NIO and a cooling trend in the tropical WP, a low-level anomalous anticyclone strengthens 
over the subtropical NWP, causing a dipole rainfall trend over the EA–NWP. The impact of the east–west SST gradient pat-
tern is confirmed by numerical experiments. Our findings highlight that the internally-generated gradient of NIO–WP SST 
trends is an important source of the uncertainty in EA–NWP summer rainfall decadal changes in simulations.

Keywords East Asia summer rainfall · Internal variability · Anomalous anticyclone

1 Introduction

In the monsoon region of East Asia, where more than 100 
million people live, the summer rainfall has experienced a 
prominent change in recent decades. In China, the change of 
rainfall since the late 1970s mainly features a south-flood-
north-drought (SFND) pattern, characterized by an increase 

of rainfall in the south and a decrease of rainfall in the north 
(Hu 1997; Xu 2001). The rainfall changes have caused 
severe droughts in North China and frequent flooding along 
the Yangtze River and South China during recent decades, 
causing large losses in human lives and enormous damages 
to local economies (Huang et al. 2007). Meantime, promi-
nent rainfall changes also have been found in the other East 
Asian regions such as southwest Japan and Korea (Wang 
et al. 2006). The rainfall changes in East Asia are associated 
with large-scale atmospheric circulation modulation, includ-
ing a weakening of East Asian summer monsoon (Wang 
2001; Yu et al. 2004), a southward shift of the 200 hPa jet 
stream (Yu et al. 2004; Yu and Zhou 2007; Schiemann et al. 
2009), and an intensification and a westward extension of 
western Pacific subtropical high (Hu 1997; Gong and Ho 
2002). Generally, two main lines of reasons have been pro-
posed to explain the multi-decadal changes of summer rain-
fall in East Asia.

One is to attribute the rainfall changes to the effect of 
anthropogenic forcing, including changes in aerosol emis-
sion and greenhouse gas concentration (Menon et al. 2002; 
Zhou et al. 2009a). Numerical model simulations show that 
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the increasing of aerosol emission in East Asia could cool 
the Asian continent and weaken land–ocean thermal contrast 
between Asian continent and the NWP (Wang et al. 2013b; 
Song et al. 2014; Dong et al. 2015). Consequently, the mon-
soon circulation turns weak and brings less vapor to North 
China, causing a drying trend over North China (Ohba and 
Ueda 2006; Wang et al. 2015). Unlike the dynamic effect 
of aerosol forcing, the increase of greenhouse gas concen-
tration affects East Asian summer rainfall mainly via ther-
modynamic processes (He et al. 2012; Li et al. 2015). The 
greenhouse gas-induced global warming makes atmospheres 
more humid, which in turn results in increasing precipita-
tion in monsoon rainfall belt, obeying the so-called wet-
get-wetter process (Chou and Neelin 2004; Held and Soden 
2006; Chou et al. 2009; He et al. 2012). Moreover, some 
processes related to the land-sea temperature contrast and 
the relative humidity are also important for the monsoon 
rainfall changes over the land, which complements the “wet-
get-wetter” process for the thermodynamic processes (Byrne 
and O’Gorman 2013; Byrne and O’Gorman 2015). Model 
experiments show that the combined effects of increases in 
greenhouse gases and aerosol emissions help to weaken East 
Asian summer monsoon circulation (Song et al. 2014; He 
et al. 2019) and form the SFND rainfall trend since the early 
1970s (Wang et al. 2013b; Tian et al. 2018).

The other is to attribute to the internally generated 
low-frequency variability in climate system. Using a 123-
year precipitation data (1880–2002) at 35 stations in East 
China, Ding et al. (2008) revealed that the variations of 
summer rainfall in China has a considerable component 
of interdecadal oscillation, with the period varying from 
12 to 80-year. For example, in North China, significant 
above-normal precipitation occurred from 1940s to the 
1970s, while below-normal precipitation was observed 
from the 1890s to the 1930s and from 1980s to the 1990s. 
The multidecadal oscillations in rainfall in turn are likely 
linked to the multi-decadal variations of the tropical sea 
surface temperature, especially the Pacific decadal oscil-
lation (PDO) (Ma 2007; Zhou et al. 2009a; Qian and Zhou 
2014; Song and Zhou 2015; Ueda et al. 2015; Zhang and 
Zhou 2015). In the positive PDO phase, atmospheric cir-
culation anomalies over the EA–NWP regions feature an 
anomalous Pacific-Japan (Nitta 1987)/East Asian-Pacific 
(Huang and Wu 1989) (PJ/EAP) teleconnection-like pat-
tern in response to Tropical Indian Ocean (TIO) warm-
ing, with a high-pressure system over the North China 
reducing rainfall in North China, and vice versa (Qian and 
Zhou 2014). Beside the PDO, the multi-decadal changes of 
SST in the central and the eastern Pacific (Li et al. 2010; 
Wang et al. 2013a; Xiang et al. 2013; He and Zhou 2015; 
Li et al. 2019) and the Indian Ocean (Yang et al. 2007; Li 
et al. 2008; Xie et al. 2009, 2016; Kosaka et al. 2013) are 
also considered to affect summer precipitation over East 

Asia through influencing on the subtropical northwest-
ern Pacific high (SNPH). Furthermore, Wu et al. (2019) 
recently found that the SFND-like pattern of multi-dec-
adal rainfall change can result from atmospheric internal 
variability.

Thus, both external forcing and internal variability 
likely contribute to the multi-decadal trends of summer 
rainfall in East Asia. However, the relative contribution 
of each has not yet been known. It is often difficult to dis-
tinguish the internally-generated low-frequency variability 
and externally-forced climate change by analyzing obser-
vations. Deser et al. (2012a) and Wallace et al. (2012) 
developed a methodology to separate the forced climate 
change and internally generated variability using a large 
ensemble of simulation with a single climate model. Each 
ensemble member starts from a randomly perturbed ini-
tial atmospheric condition and is subject to the same pre-
scribed time-varying radiative forcing. This follows from 
the fact that one given climate model contains both intrin-
sic and external forced climate changes. The ensemble-
mean trends provide an estimated of the forced response 
of the model and the resulting difference in behavior of 
the ensemble members can be identified as the internal 
variability of the climate model. Many previous studies 
have examined the intrinsic and externally forced contribu-
tion in climate trends with such an initial-condition large 
ensemble conducted with a fully-coupled global model 
(Deser et al. 2012a, b; Wallace et al. 2012; Hu et al. 2018). 
The method is proved to be effective to separate the role of 
the forced climate change and internal variability.

Here, to avoid model dependence, we use three large 
ensembles: (1) a 30-member ensemble of simulations of Ver-
sion 4 of the Community Climate System Model (CCSM4) 
(Gent et al. 2011), (2) a 40-member ensemble of simula-
tions by the CESM Large Ensemble project (Kay et al. 2015) 
and (3) a 100-member ensemble of simulations by the Max 
Planck Institute Earth System Model (MPI-ESM) (Maher 
et al. 2019). In this study, we aim to answer the following 
questions: (1) What are the relative contribution of external 
forcing and internal variability to the recent multi-decadal 
trends of summer rainfall in East Asia? (2) How does the 
internal variability affect multi-decadal trends of summer 
rainfall in East Asia?

The remainder of the paper is organized as follows. Sec-
tion 2 provides a description of the data and methods used 
in this study. Section 3 shows the relative contribution of 
internally-generated variability and externally-forced climate 
change to East Asian summer rainfall trends. Section 4 dem-
onstrates the leading modes of internally-generated rainfall 
trends over East Asian and their corresponding atmosphere 
circulation, SST and wave activity flux anomalies. Section 5 
presents the role of NIO-WP SST gradient. Section 6 gives 
the summary.
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2  Data and method

2.1  Model simulations

Following Deser et al. (2012a), we first used 30-member 
ensemble simulations to evaluate the role of internal vari-
ability in multidecadal trends of East Asian summer rain-
fall. The ensemble simulations are conducted by Version 
4 of the Community Climate System Model (CCSM4) for 
the period 1970–2005 (https ://www.earth syste mgrid .org). 
CCSM4 is a comprehensive coupled atmosphere–ocean–sea 
ice-land general circulation model at a horizontal resolu-
tion of approximately 0.94 latitude and 1.25 longitude. Each 
ensemble member undergoes the same external forcing that 
is the same as that using in the phase 5 of the Coupled Model 
Intercomparion Project (CMIP5). Each member begins from 
identical initial conditions in the ocean, land, and sea ice 
model components but slightly different initial conditions in 
the atmospheric model. More details of the model’s formu-
lation and performance can be found in Gent et al. (2011).

We also use a 40-member ensemble simulation by the 
CESM Large Ensemble project (Kay et al. 2015) and a 
100-member Grand Ensemble generated by the MPI-ESM 
(Maher et al. 2019) to examine whether internal variabil-
ity generally exists in other climate models. The CESM 
Large Ensemble make use of the fully coupled CESM, ver-
sion 1 with the Community Atmosphere Model, version 5 
(CESM1-CAM5) (Hurrell et al. 2013) at approximately 18 
horizontal resolution in the ocean and atmosphere. Each 
ensemble member is forced with the CMIP5 historical forc-
ing in the period 1920–2005 (https ://www.earth syste mgrid 
.org). The MPI-ESM has a T63L47 configuration in the 
atmosphere and 40 vertical levels in the ocean. The histori-
cal simulations of the MPI-ESM ensemble begin in 1850 
and are forced with the CMIP5 historical forcing until 2005 
(https ://esgf-data.dkrz.de/searc h/mpi-ge/).

2.2  Observational data

The Chinese daily rainfall data comprising 824 surface sta-
tions are derived from the Chinese Meteorological Data 
Center, China Meteorological Administration from 1970 to 
2005 (http://data.cma.cn/data). Stations were excluded when 
there were one or more days of missing data; Thus, 725 
stations were selected to ensure data consistency over the 
study period.

2.3  Method

We analyze the period 1970–2005 from each ensemble 
member and compute linear trends over this 36-year period 

for summer (June–July–August). Performing the empirical 
orthogonal function (EOF) analysis on the departures of the 
precipitation trends from the ensemble mean to extract the 
leading patterns of internal variability-induced precipitation 
trends in EA–NWP. For each large ensemble, the external 
forcing is the same for the all the individual members, and 
the difference among the individual members should be due 
to internal variability. Therefore, the leading EOF modes 
could be considered as the major patterns of internal vari-
ability-induced precipitation trends in EA–NWP. The SST 
and circulation anomalies associated with the precipitation 
EOF modes are calculated by regression on the correspond-
ing principal components (PCs). We use the Student’s t-test 
to test the significance of long-term trends for the spatial pat-
terns based on valid freedom. In this paper, the term “trend” 
denotes the linear trend.

3  Internal and external parts of total trends

During the period from 1970 to 2005, the observed summer 
rainfall in China stations experienced a significant change. 
Wetting trends are mainly distributed in the southeast of 
China, with the maximum wetting rate over 2 mm day−1  36−1 
 year−1, while observed drying trends mainly exists in the 
North China. The observed rainfall trends generally feature a 
dipole pattern in China. Figures 1 and 2 examine the summer 
precipitation trends over 1970–2005 from each run of CESM 
and CCSM4, respectively. Although each simulation shares 
the same external forcing in the same model, summer pre-
cipitation trends display considerable member-to-member 
diversity in EA–NWP. Specifically, some ensemble mem-
bers (runs #5, #25 and #30) in CESM and some ensemble 
members (runs #8, #21 and #25) in CCSM4 exhibit posi-
tive–negative meridional structure over EA–NWP which are 
similar to the observed rainfall trend pattern, while some 
other members (runs #10 and #15) in CESM and (runs #4, 
#5 and #14) in CCSM4 show reverse structure in EA–NWP. 
The summer precipitation trends over 1970–2005 in the 
100-member ensemble of MPI-ESM simulations also show 
strong member-to-member diversity (figure not shown). In 
each ensemble, all the individual members are forced by the 
same external forcing in the same model, the large diversity 
across the individual ensemble members suggests the impor-
tant role of internal variability in summer rainfall trend in 
EA–NWP on the multidecadal time scale.

Figure 3a, d, g show the ensemble-mean JJA precipitation 
trends over 1970–2005 in CCSM4, CESM and MPI-ESM 
ensemble simulations, respectively. Despite some differ-
ences among the three models, the ensemble-mean JJA pre-
cipitation trends in all the three ensembles display a dipole 
structure over the EA–NWP, with positive rainfall trends in 
the subtropical NWP but negative rainfall trend to the north, 

https://www.earthsystemgrid.org
https://www.earthsystemgrid.org
https://www.earthsystemgrid.org
https://esgf-data.dkrz.de/search/mpi-ge/
http://data.cma.cn/data
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indicating that external forcing could lead to the south-north 
opposite rainfall trends over the EA–NWP. Compared with 
the observations, the ensemble-mean precipitation trend 
in CCSM4 (Fig. 3a) is similar in shape but much smaller 
in magnitude, consistent with the model study by He et al. 
(2012), suggesting that the observed rainfall trends should 
be only partly contributed by external forcing.

In order to quantify the relative contribution of inter-
nally-generated low-frequency variability and externally-
forced changes in JJA precipitation trends (1970–2005), 
we used the signal-to-noise ratio of the ensemble mean 

precipitation trends to the standard deviation of the depar-
tures. For CCSM ensemble simulations, the standard devi-
ation of the JJA precipitation trends is shown in Fig. 3b, 
which is larger than 1.2 mm day−1  36−1  year−1 in the latitu-
dinal band of 10° N–30° N and smaller than 0.9 mm day−1 
 36−1  year−1 in the high latitudes. The signal-to-noise ratio 
between the ensemble-mean JJA precipitation trends and 
the standard deviation are less than 1.0 in nearly all of the 
region over EA–NWP. In the Yangtze river valley and the 
regions around Lake Baikal, the ratio is small than 0.2. 
The ratio ranges from 0.4 to 0.6 in the subtropical NWP, 

Fig. 1  JJA rainfall trends (1970–2005; mm day−1  36−1  year−1) in observation and in each of the 40 CESM ensemble members



249The role of internal variability in multi-decadal trends of summer rainfall over East Asia–…

1 3

Southwest China and North China. Similar results also 
exist in the CESM (Fig. 3e, f) and the MPI (Fig. 3h, i) 
ensemble simulations. Although there are some differences 
in the ensemble-mean JJA precipitation trends among the 
three models, all the three ensemble simulations show 
that the summer rainfall changes in EA–NWP display a 
large diversity among individual members, indicating a 
profound influence of internal variability to multidecadal 
summertime precipitation change over EA–NWP.

4  Leading mode of internal variability

The summer EA–NWP precipitation trends show a notable 
diversity among the individual members in all the three 
simulations. In order to find out the coherent spatial pat-
tern of internally generated precipitation trends, we per-
form an EOF analysis of ensemble precipitation trends in 
the domain of EA–NWP (10°–50° N, 90°–140° E) among 

Fig. 2  JJA rainfall trends (1970–2005; mm day−1  36−1  year−1) from each of the 30 CCSM4 ensemble members
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all ensemble members for CCSM4, CESM and MPI-ESM 
simulations, respectively.

The EOF1s are well separated from the others according 
to the criterion of North (North et al. 1982) and account 
19.7%, 24.4% and 14.7% for CCSM, CESM and MPI-ESM, 
respectively. Figure 4a–c show the regression maps of pre-
cipitation trends upon the first leading principle components 
(PC1s) for CCSM, CESM and MPI-ESM, respectively. In 
all the three models, the EOF1 modes feature a meridional 
dipole in precipitation trends, with positive values in the 
Mei-yu Front rainfall belt (20°–35° N) and negative values 

in the tropical NWP. It is interesting to notice that the spatial 
structures of the leading internal model are similar to those 
in the ensemble-mean rainfall trends. The results suggest 
that the observed summer rainfall trends over the EA–WNP 
are likely affected by both internal variability and external 
forcing.

How does the leading internal variability pattern gener-
ate? Figure 5a, b show the upper and the lower tropospheric 
atmospheric circulation associated with the EOF1 mode 
in CCSM4. Associated with the dipole pattern in rainfall 
trends, there is a prominent anomalous anticyclone over the 

Fig. 3  The ensemble-mean rainfall trends during 1970–2005 
(mm day−1  36−1  year−1) in CCSM4 (a), the standard deviation of the 
rainfall trends (b), and the ratio of the ensemble mean to the standard 

deviation of rainfall trends among the 30 CCSM4 ensemble members 
(c). d–f In CESM and g–i in MPI-ESM
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tropical NWP at 850 hPa. At 200 hPa, there are the cyclonic 
anomalies over the tropical NWP, indicating that the circu-
lation anomalies are baroclinic there. For CESM (Fig. 6a, 
b) and MPI-ESM (Fig. 7a, b), the anticyclonic center and 
cyclonic center over the tropical NWP are also significant in 
the lower and the upper level, respectively. The atmospheric 

circulation anomalies are dynamically consistent with the 
dipole rainfall trend. On one hand, the anomalous anticy-
clone over the tropical NWP can decrease local rainfall but 
increase East Asian summer monsoon rainfall, thus lead-
ing to the meridional dipole rainfall belt over the regions of 
EA–NWP (Wang et al. 2003). On the other hand, the rainfall 

Fig. 4  Regressions of summer rainfall trends (1970–2005; shading; 
mm day−1  36−1  year−1) among the ensemble members upon the nor-
malized PC1 of EOF modes of rainfall trends in the domain of East 

Asia–Northwest Pacific (10°–50° N, 90°–140° E) in a CCSM4, b 
CESM and c MPI respectively. The dots represent passing the 95% 
confidence level

Fig. 5  Regression of JJA geopotential height trends (Pa  36−1  year−1; 
shading) and winds trends (m  s−1  36−1  year−1; vectors) at 200  hPa 
(a) and SLP trends (Pa  36−1  year−1; shading) and winds trends 
(m s−1  36−1  year−1; vectors) at 850 hPa (b) on the normalized PC1 in 
CCSM. The wave activity flux at 850 hPa  (m2  s−2  36−1  year−1; vec-

tors) and rainfall trends (shading) associated with the EOF1 mode 
with the PC1 in CCSM4 (c). Correlations of JJA SST trends with the 
PC1 in CCSM4 (d). The dots represent passing the 95% confidence 
level
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anomaly can induce the atmospheric circulation anomalies 
via exciting baroclinic Rossby wave. The result suggests that 
the leading mode of internally-generated precipitation trends 
over the EA–NWP is linked to the anomalous anticyclone 
over the tropical NWP.

Figures 5c, 6c and 7c show the wave-activity fluxes 
associated with the EOF1 mode in CCSM, CESM, and 
MPI-ESM simulations, respectively. The definition of the 
wave-activity fluxes follows Takaya and Nakamura (2001) 
as:

Fig. 6  As in Fig. 5 but for the CESM

Fig. 7  As in Fig. 5 but for the MPI-ESM
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Here, �  denotes the stream function, f  the Coriolis 
parameter, R the gas constant, � = (u, v) the horizontal 
wind velocity, and 𝜎 =

(
RT̄∕Cpp

)
− dT̄∕dp , with tem-

perature T  , and the specific heat at constant pressure Cp . 
Overbars and primes denote the climatology in JJA and the 
anomalies regressed on normalized PC1, respectively. The 
fluxes are parallel to the local group velocity of stationary 
Rossby wave. In all three models, there are notable north-
ward wave activity fluxes from the tropical WP to East Asia, 
which could enhance rainfall in the Mei-yu Front rainfall 
belt (Huang and Sun 1992). The wave fluxes even propa-
gate into Alaska via a great cycle path in CCSM and CESM 
models, in consistent with the wave-like geopotential height 
anomalies from the tropical NWP to high latitudes (Figs. 5, 
6, 7b). These results indicate that the circulation and rainfall 
anomalies associated with the PC1 mainly arise from the 
tropics.

Figures  5d, 6d and 7d show the correlation of SST 
trend over 1970–2005 with the PC1 in CCSM, CESM and 
MPI-ESM, respectively. For CCSM simulations, there are 
significant positive correlations over the TIO and the sub-
tropical Northwest Pacific (SNWP) but prominent negative 
correlations over the tropical western and central Pacific. 
For CESM (Fig. 6d), the positive values are over the North 
Indian Ocean and SNWP and negative values over the tropi-
cal western and central Pacific and Southern Indian Ocean 
(SIO). For MPI-ESM (Fig. 7d), there are also significant 
positive correlations in the NIO and negative correlations 
in tropical western and central Pacific. Although there are 
some differences in the SST pattern among the three mod-
els, they all show the east–west contrasting SST anomalies 
between the NIO and the tropical Pacific. Many previous 
studies have shown that such variability in the SST gradi-
ent between NIO and tropical Pacific contribute to the ACC 
over the NWP (Terao 2005; Chen et al. 2012; Cao et al. 
2013; Xiang et al. 2013; Xie et al. 2016; Hu et al. 2019). 
The east–west contrasting SST anomalies between the NIO 
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and the tropical Pacific weaken the walker circulation with 
significant easterly anomalies at 850-hPa (Figs. 5, 6, 7a) but 
westerly anomalies at 200-hPa over the tropical Indo-west-
ern Pacific (Figs. 5, 6, 7b) and suppress convection over the 
tropical western Pacific (Figs. 5, 6, 7c). The suppressed con-
vection over the tropical western Pacific could form a low-
level anticyclone residing to the northwest of the suppressed 
convection through exciting a Rossby wave response, which 
occurs with suppressed rainfall on its southeastern flank and 
enhanced rainfall in the Mei-yu Front rainfall belt (Wang 
et al. 2013a). Therefore, the EOF1 of precipitation trends is 
likely due to the internally-generated east–west contrasting 
SST variation between the NIO and the western and central 
Pacific on multidecadal time scale. The result is consist-
ent with the observed result that the westward extension of 
WPSH since the late 1970s is likely caused by the warming 
trend in the NIO and cooling trend in WP (Hu 1997; Gong 
and Ho 2002; Zhou et al. 2009b).

5  Role of Indo‑WP SST gradient

To further verify the role of the SST gradient between the 
NIO and the western and central Pacific, we conduct four 
experiments using the ECHAM5, which is an effective tool 
to study the atmospheric response to the SST anomalies 
(Xie et al. 2016; Jiang et al. 2019). A detailed description 
of ECHAM5 is given in Roeckner et al. (2003). The first 
experiment is forced by climatological SST and sea ice 
with a seasonal cycle, which is referred as control run. The 
second experiment, named as Run_NIO-WP_0.5, with the 
0.5 °C SST anomalies in the NIO (0° N–20° N, 40° E–120° 
E) and − 0.5 °C SST anomalies in the WP (− 15° S–15° 
N,140° E–180° E) to be added in the climatological SST 
as the boundary conditions. The third (Run_NIO-WP_1.0) 
and the fourth experiments (Run_NIO-WP_1.5) are similar 
to the second experiment except for that the magnitudes of 
1.0 °C and 1.5 °C SST anomalies are added, respectively. 
The last three experiments are referred as the sensitive runs. 
The details of SST boundary conditions in these experiments 
are given in in Table 1 and shown in Fig. 8a–c. Each experi-
ment is run for 31 years. Figure 8d–f show the difference of 
850-hPa wind and SLP between the above three sensitivity 

Table 1  Description of control 
and sensitivity experiments in 
ECHAM5

Exp. name SST boundary condition

Control Climatological SST with seasonal cycle
Run_NIO-WP_0.5 The equal magnitude of 0.5 °C SST anomalies in the NIO (0° S–20° 

N, 0°–360°) and − 0.5 °C SST anomalies in the WP (− 15° S–15° N, 
140° E–180° E) are added on the climatological SST

Run_NIO-WP_1.0 Similar to Run_NIO-WP_0.5, but with the equal magnitude of 1.0 °C
Run_NIO-WP_1.5 Similar to Run_NIO-WP_0.5, but with the equal magnitude of 1.5 °C
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Fig. 8  The anomalies of 850-hPa winds (vectors) and SLP (contours) respond (d–f) to the anomalous NIO SST warming and WP SST cooling 
with the magnitude of 0.5 °C (a), 1.0 °C (b) and 1.5 °C (c), respectively
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runs and the control run. In response to the east–west con-
trasting SST anomalies between the NIO and the tropical 
Pacific, there are significant anticyclonic anomalies over the 
tropical NWP and the intensity of anticyclonic circulation 
increase with the increase of the NIO-WP SST gradient.

Figure  9 shows the difference of upper-level poten-
tial velocity and divergent winds between the Run_NIO-
WP_1.5 experiment and the control run. It can be seen that 
the east–west SST gradient induces a weakened walker cir-
culation with obvious upper-level divergent anomalies over 
the NIO and convergence over the western Pacific. Conse-
quently, the atmospheric convection over the tropical west 
Pacific will be suppressed, which could lead to an anoma-
lous anticyclone in the Northwest Pacific via a Rossby wave 
response (Wang et al. 2003; Xie et al. 2009, 2016).

6  Summary

This study investigated the role of internal variability on the 
multidecadal variation of East Asian summertime precipita-
tion trends using three large ensemble simulations that are 
based on CCSM4, CESM and MPI-ESM. In each of the 
three large ensembles, although the individual members are 
forced by the same external forcing and are conducted by 
the same model, summer rainfall trends in EA–NWP dur-
ing 1970–2005 show a large diversity across the individ-
ual ensemble members. The signal-to-noise ratio between 
ensemble-mean trend and standard deviation is much smaller 
than one in most of these regions, suggesting that internally-
generated variability is larger than external forcing-induced 
rainfall changes during the interval in the simulations.

We found that the diversity of summer rainfall trends 
among the individual members are organized into some 
coherent patterns in the regions of East Asia and the 

subtropical NWP. In all the three models, the first leading 
mode of rainfall trends features a meridional dipole pat-
tern, with drying trends over the subtropical NWP and wet-
ting trends in the Mei-yu Front rainfall belt (20°–35° N). 
The leading mode is significantly positive correlated with 
SST over the NIO but negative correlated with SST over 
the tropical western and central Pacific. The NIO-WP SST 
gradient could weaken the walker circulation and suppress 
atmospheric convection over the tropical western Pacific. 
The suppressed convection could trigger an anomalous anti-
cyclone to the northwest via a Rossby wave response. The 
anomalous anticyclone will develop over the tropical North-
west Pacific via convective-circulation feedback (Wang et al. 
2003; Xie et al. 2009) and extracting kinety energy from 
mean flow (Hu et al. 2019). Finally, the anomalous anticy-
clone will suppress Northwest Pacific summer monsoon and 
enhance East Asian monsoon, leading to the dipole rainfall 
trends over the EA–NWP. Thus, the meridional dipole pat-
tern rainfall trends over the EA–NWP can result from the 
internally-generated gradient of NIO-WP SST trends on the 
multidecadal time scale.
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