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A positive Indian Ocean Dipole (pIOD) refers to a sea surface 
temperature (SST) pattern that features warm anomalies in 
the equatorial western Indian Ocean and cold anomalies 

in the east, described by a positive dipole mode index (DMI)1. A 
pIOD event usually peaks in austral spring (September, October, 
November; SON) but starts to develop in austral winter, with an 
initial cooling off Sumatra–Java suppressing the local atmospheric 
convection there and generating anomalous southeasterly winds. 
The anomalous winds promote upwelling and lift the thermocline 
that in turn reinforces the initial cooling1,2, a process referred to as 
local Bjerknes feedback. During a strong pIOD, the growth of cool 
anomalies causes a northwestward shift of atmospheric convection 
and a westward extension of the southeasterly trades that usually 
flow over the southern tropical Indian Ocean in austral winter 
and spring. The anomalous easterlies extend across the equatorial 
Indian Ocean, where weak westerlies normally prevail3 (Extended 
Data Fig. 1). The anomalous easterly winds promote warm SST 
anomalies, convergence, and rainfall in the equatorial western 
Indian Ocean1–3.

The altered ocean–atmosphere circulations induce weather 
extremes in Indian Ocean-rim countries1–9, such as droughts, 
heatwaves and bushfires in Indonesia and Australia4–7, floods and 
malaria outbreaks in East Africa9,10, and coral reef death across 
western Sumatra11. During the 1997 strong pIOD event2 (Extended 
Data Fig. 1), floods in the African countries led to several thousand 
deaths and hundreds of thousands of people displaced, whereas 
wildfires in the eastern Indian Ocean regions affected the lives of 
tens of millions3 and the global carbon budget12. Similar severe 
impacts also occurred during the 2019 strong pIOD event13, and 
Australia experienced a devastating bushfire season, referred to as 
the Black Summer, with a burnt area of more than 170,000 km2, 30 
people killed and 3,000 buildings destroyed14.

Determining how pIOD SST may change under greenhouse 
warming is one of the most important issues in climate science; 
however, for several climate model generations, there has been 
either a lack of intermodel consensus or no statistically significant 
change using the conventional DMI (refs. 15–17).

Long-standing uncertainty in projected pIOD SST change
Uncertainty in projected pIOD SST change is despite a strong inter-
model consensus on a mean state change in the tropical Indian 
Ocean, which features equatorial easterly wind trends and a faster 
warming rate in the northwest than in the southeast of the tropical 
Indian Ocean, a shallowing equatorial thermocline15–19, and some 
changes in characteristics of strong pIOD20,21. First, the faster warm-
ing in the west equatorial Indian Ocean facilitates an increased fre-
quency of a westward-shifted atmospheric convergence zone from 
the east and hence there are more events with extreme impacts, 
even if SST variability does not change20. Second, the enhanced 
north-minus-south SST gradient inhibits the seasonal southward 
shift of the tropical Indian Ocean Intertropical Convergence Zone21, 
leading to an anomalously weak convergence in the eastern Indian 
Ocean, particularly during a strong pIOD (Extended Data Figs. 1 
and 2d–f). Third, although a projected thermocline shallowing in 
the eastern Indian Ocean increases the role of the relatively cold 
subsurface water through an increased thermocline response to 
winds, this is offset by a weakened response of equatorial winds to 
SST anomalies. The weaker wind response occurs because the lower 
atmosphere becomes more stable, as the low troposphere warms 
faster than the surface under greenhouse warming16.

Palaeoclimate proxies show that pIOD was more intense dur-
ing the past warmer period of the middle Holocene than in the 
twentieth century7, and there is already an increase in the fre-
quency and strength of pIOD events during the second half of 
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A strong positive Indian Ocean Dipole (pIOD) induces weather extremes such as the 2019 Australian bushfires and African 
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the twentieth century8; however, climate model projections of the 
response of pIOD SST variability to greenhouse warming remain 
uncertain15. Using the DMI determined from the observed poles 
assumes that the pIOD possesses little pattern diversity and that 
the simulated location of pIOD SST anomaly centres across mod-
els is the same as the observed. Here we show that there are two 
pIOD regimes—thus requiring at least two separate indices—
and that their associated anomaly patterns differ vastly from 
one model to another. Furthermore, there is a robust pIOD SST 
change if we focus on SST variability patterns and centres unique 
to each individual model.

Dynamics of the two distinct pIOD regimes in observations
Previous studies have shown that pIOD events display different fla-
vours20,22–25. During a strong pIOD, the anomalous cooling off Java–
Sumatra expands northward and then westward along the equator20, 
inhibiting the seasonal southward shift of the intertropical con-
vergence zone towards the equatorial eastern Indian Ocean and 
inducing a westward shift of the equatorial eastern Indian Ocean 
convergence zone21, generating strong easterlies along the equator 
(Extended Data Fig. 1d–f). These winds in turn enhance the equa-
torial west-minus-east SST gradient through a positive nonlinear 
zonal and vertical feedback, dramatically increasing the anomalous 
cooling in the equatorial eastern Indian Ocean20.

During moderate pIOD events such as in 1982, Bjerknes feed-
back drives moderate cooling off Sumatra–Java (Extended Data 
Fig. 2a–c); to the west, the dominant forcing of the broad area of 
warming includes an anomalous Ekman pumping that arises from 
westward propagation of off-equatorial downwelling Rossby waves 
that are generated by equatorial anomalous easterlies in the eastern 
Indian Ocean during the development phase, and their subsequent 
reflection at the western boundary as downwelling Kelvin waves26. 
Heat budget analysis shows that Ekman pumping is the dominant 
forcing of the warm anomalies (Extended Data Fig. 3, see also the 
‘Heat budget analysis’ section in the Methods).

Depiction of the two distinct pIOD regimes
The large difference in the spatial pattern and the dynamics between 
the strong and moderate pIOD indicates that at least two indices 
are needed to distinguish them13,20,27. To construct the indices, we 
use the first two principal modes of an empirical orthogonal func-
tion (EOF) analysis of SON-averaged SST anomalies that cover the 
1982–2015 period, each described by a principal spatial pattern and 
a principal component (PC) time-series that is scaled to have a vari-
ance of unity (see the ‘Data, models and EOF analysis’ section in 
the Methods). At their positive phase, EOF1 shows a cold-anomaly 
centre off Sumatra–Java, which is accompanied by warming in 
much of the tropical Indian Ocean basin, analogous to that associ-
ated with the DMI (correlation of 0.90); this is accompanied by a 
shoaled equatorial thermocline in the east but a deepened equato-
rial thermocline to the west (Fig. 1a). EOF2 exhibits a cold-anomaly 
maximum in the eastern equatorial region, which tends to be  

equatorially symmetric and extends westward (Fig. 1b). This reflects 
the impact of equatorial nonlinear advection13,20,27.

The two PC time-series display a nonlinear relationship (Fig. 1c). 
A pIOD event can be constructed by a combination of the two EOFs 
to realize event diversity. Strong pIOD events appear in the quadrant 
in which both PCs are positive, that is, with the equatorially sym-
metric cold anomalies of EOF2 superimposed onto the cold anoma-
lies off Sumatra–Java of EOF1 such that these events are dominated 
by cold anomalies, as occured in 1997 and 2019 (refs. 20,27). Strong 
pIOD events can therefore be described by a strong pIOD index, 
defined as S = (PC1 + PC2)/

ffiffiffi
2

p
I

. By contrast, moderate pIOD events 
appear in the quadrant in which PC1 is positive but PC2 is negative, 
such that cold anomalies in the east are weak and warm anomalies to 
the west dominate, as occured in 1982. Moderate pIOD events can 
thus be described as M = (PC1 – PC2)/
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2

p
I

. The two indices separate 
the observed pIOD events identified by the DMI into two groups: 
strong events such as 1994, 1997, 2006 and 2019 in the S-index (red 
curve); and moderate events such as the prominent 1982, 1987 and 
2015 events in the M-index (green curve) (Fig. 1c,d). Our approach 
is similar to a previous analysis on rainfall20, but we instead use SST, 
which allows depiction of both strong and moderate pIOD events 
using SST anomalies. This is the simplest objective description of 
pIOD diversity compared with other attempts22,24.

Sea surface temperature anomaly patterns for the two types of 
pIOD constructed using PC1 and PC2 reproduce the salient fea-
tures in raw data (Extended Data Figs. 1 and 2), in terms of domi-
nance of the strong cold anomalies in strong pIOD events and by 
broad-scaled warm anomalies in moderate pIOD events, respec-
tively (Fig. 1e,f). Dynamics that govern the ability to generate the 
two patterns in part depend on whether the cold anomalies grow 
northwest towards—and then westward along—the equator, trig-
gering the equatorial nonlinear advective feedbacks that lead to the 
enhanced cooling represented by PC2, that is, PC2 is a nonlinear 
function of PC1, which is expressed as PC2(t) = α[PC1(t)]2 + βPC
1(t) + γ, similar to that used for describing ENSO diversity28,29, in 
which α, β and γ are the nonlinear coefficient, linear coefficient and 
constant of the quadratic function, respectively. For the observed, 
obtained from multireanalysis products (see Methods section 
‘Nonlinear dynamics and model selection’), the mean value of α is 
0.42 (Fig. 1c). A large value of α represents strong nonlinearity that 
distinguishes moderate and strong pIOD events.

Simulation of the two pIOD regimes in climate models
We analyse outputs from 35 available CMIP5 (ref. 30) and 19 CMIP6 
(ref. 31) models by applying the same EOF analysis on SON-averaged 
SST anomalies from the mean of the first 100 years, quadratically 
detrended over the full 1900–2099 period (see the ‘Data, models 
and EOF analysis’ section in the Methods). These models were 
forced with historical anthropogenic and natural forcings up to 
2005 for CMIP5 or 2014 for CMIP6, and thereafter under a future 
greenhouse gas emission scenario of representative concentra-
tion pathway 8.5 (RCP8.5) for CMIP5 and the equivalent updated 

Fig. 1 | Identification of observed strong and moderate pIOD events. a, SON SST and tropical vertical potential temperature anomalies (°C, colour) and 
wind stress anomalies (N m−2, vectors) regressed onto the first principal component (PC1) of EOF of SON SST anomalies over the tropical Indian Ocean 
(5° S to 5° N and 40° E to 100° E) for the 1982–2015 period average across four reanalysis products (see the ‘Data, models and EOF analysis’ section 
in the Methods). Subsurface potential temperature and wind stress data are from ORA-S5. The vertical temperature anomalies are calculated as the 
average over 2.5° S to 2.5° N. b, Same as a, but for PC2. c, The nonlinear relationship between the normalized PC1 and PC2. Red dots indicate strong 
pIOD years (PC1 >1 s.d. and PC2 > 0.5 s.d.); green dots denote moderate pIOD years (PC1 > 1 s.d. and PC2 < 0.5 s.d.); the black dot marks the 2019 pIOD, 
obtained by regressing the SST anomaly pattern over the tropical Indian Ocean in 2019 from the GODAS dataset onto the EOF1 and EOF2 patterns; 
and the purple curve shows a nonlinear fit PC2(t) = α[PC1(t)]2 + βPC1(t) + γ. d, The time-series of a DMI (upper panel) can be split into (red) strong 
(S = (PC1 + PC2)/

ffiffiffi
2

p
I

) and (green) moderate pIOD (M = (PC1 – PC2)/
ffiffiffi
2

p
I

) indices (lower panel) to capture the strong and moderate pIOD events in Fig. 1c. 
The black dashed line in upper half shows 0.75 s.d. of the DMI, whereas the red and green dashed lines in the lower half show 1.5 s.d. and 1.25 s.d. of the 
S- and M-index, respectively. e, Reconstruction of temperature anomalies (°C, colour shading) and wind stress anomalies (N m−2, vectors) of strong pIOD 
using the two EOFs. The green boxes indicate areas used for calculating the DMI. f, Same as e, but for moderate pIOD.
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scenario for CMIP6, that is, shared socioeconomic pathway 5–8.5 
(SSP5–8.5) (refs. 30,31). The simulated anomaly pattern of either the 
S- or M-index differs vastly from one model to another (Fig. 2a,b). 
In contrast to the use of the DMI, our approach accounts for diver-
sity in patterns and thus facilitates assessment of the response of the 
pIOD SST variability as simulated by each individual model.

Most models examined here simulate a value of α that is lower 
than the observed and a total of 20 models produce a value of α that 
is greater than 50% of the observed (Fig. 2c). These 20 models simu-
late a reasonable nonlinear PC1 and PC2 relationship and the con-
trast in the cold- and warm-anomaly dominance between the strong 
and moderate pIOD events (Extended Data Fig. 4 for samples).  
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We examine this group of models for assessment of possible change 
in strong and moderate pIOD events under greenhouse warming. 
The remaining 34 models produce a far weaker nonlinear PC1 – PC2 
relationship (Fig. 2d) and are not used.

Opposite response of the two pIOD regimes to global 
warming
We compare the standard deviation (s.d.) of the S- and M-index 
in the present-day (1900–1999) and future (2000–2099) periods. 
There is an opposite response: a total of 18 out of 20 (that is, 90%) 
models simulate decreased variability of the M-index (Fig. 3a),  
whereas a total 17 out of 20 models generate increased variabil-
ity of the S-index in the future period (red bars, Fig. 3a,b). The 
ensemble-mean is a decrease of 16% for moderate, but an increase of 
22% for strong pIOD variability, each statistically significant above 
the 95% confidence according to a bootstrap test (see the ‘Statistical 
test’ section in the Methods). This is in sharp contrast to the result 
using the DMI, which shows no statistically significant change in 
the multimodel mean change (Extended Data Fig. 5).

The decrease in M-index variability translates to a 52% reduction 
in occurrences of moderate pIOD events with an M-index > 1.25 s.d., 

as supported by 85% of the selected models (Extended Data 
Fig. 6a); however, the increase in S-index variability translates 
to a 66% increase in occurrences of strong pIOD events with an 
S-index > 1.5 s.d. (Extended Data Fig. 6b)—from one event every 
13.3 years in the present-day climate to one event every eight years in 
the future climate, as supported by 80% of the selected models. The 
opposite response is despite a lack of frequency change in strong and 
moderate pIOD events combined (Extended Data Fig. 6a,b), in con-
trast to a tendency of increased pIOD frequency using DMI (ref. 32).  
These results hold using other threshold values (Extended Data  
Fig. 6c,d). Climate extremes associated with strong pIOD events are 
thus likely to occur more frequently under greenhouse warming. The 
2019 strong pIOD happened to occur in conjunction with a moder-
ate Pacific warm condition33, leading to more extreme impacts.

Using 30 models simulating a value of α that is at least 33% of the 
observed value, the intermodel consensus on the change of the two 
indices is still strong. A total of 27 out of 30 models (90%) simulate 
a decrease in moderate pIOD variability and a total of 23 out of 30 
models (77%) produce an increase in strong pIOD variability, and 
their ensemble-mean changes are statistically significant (Extended 
Data Fig. 7). Sensitivity to emission scenarios shows that under 
RCP4.5, 13 out of 15 (87%) CMIP5 models that simulate a value 
of α greater than 50% of the observed value generate an increase in 
S-index variability, and 93% of the models produce a reduction in 
M-index variability (Extended Data Fig. 8).

Associated mechanisms arising from mean state changes
There is no intermodel relationship between changes in variabil-
ity or frequency of a strong pIOD event and changes in El Niño  
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Fig. 3 | Projected opposite response of moderate and strong pIOD SST. 
The result shows a decrease in moderate pIOD variability but an increase 
in strong pIOD variability. a, A total of 18 out of the 20 selected models 
(90%) generate a reduction in moderate pIOD variability depicted by the 
M-index from the present-day (1900–1999, blue bars) to future (2000–
2099, red bars) climate, with the exception of two models generating an 
increase (indicated by green circles). The multimodel mean reduction of 
16% is statistically significant above the 95% confidence level according 
to a bootstrap test. The error bars in the multimodel mean represent the 
95% confidence level determined by a bootstrap test. b, A total of 17 out 
of the 20 models (85%) simulate an increase in variability of strong pIOD 
described by the S-index from the present-day to the future climate, with 
the exception of three models generating a decrease (indicated by green 
circles). The multimodel mean increase of 22% is statistically significant 
above the 95% confidence level according to a bootstrap test. Models from 
CMIP6 are indicated in purple.

NATure CLImATe CHANGe | VOL 11 | JANUARY 2021 | 27–32 | www.nature.com/natureclimatechange30

http://www.nature.com/natureclimatechange


ArticlesNATUrE ClIMATE CHANgE

variability or frequency (Extended Data Fig. 9a,c), which suggests 
that the changes of strong pIOD are not due to changes in the El 
Niño. There is a relationship between changes in variability or fre-
quency of a moderate pIOD with changes in El Niño, but the fact 
that in the majority of models there is an increase in El Niño vari-
ability and El Niño frequency in contrast to a decrease in moderate 
pIOD (Extended Data Fig. 9b,d) rules out changes in the El Niño as 
the cause.

Instead, the opposite response arises from the mean state 
changes, featuring faster warming in the western and northern 
than the eastern and southern tropical Indian Ocean, supported by 
a trend of equatorial southeasterlies15–19 and enhanced evaporation 
in the west (Extended Data Fig. 10). Under greenhouse warming,  

the lower troposphere warms faster than the surface, such that 
the response of equatorial easterlies to SST anomalies weakens16. 
Ekman pumping, which is the main forcing for warm anomalies 
in the tropical western Indian Ocean for moderate pIOD events 
(Extended Data Fig. 3), weakens in the future climate (Fig. 4a), caus-
ing decreased M-index variability. For cold-anomaly-dominated 
pIOD events (that is, strong pIOD events), the faster mean warming 
west and northwest of the tropical Indian Ocean18,19 is conducive to 
anomalous atmosphere convection there, facilitating anomalous 
easterlies that extend to the equatorial central and western Indian 
Ocean, leading to a shallowing thermocline, enhanced equatorial 
nonlinear zonal and vertical advection, which is in turn conducive 
to cold anomalies13,20,27. Intermodel relationships between warming  
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Fig. 4 | mechanisms for the projected opposite change in moderate and strong pIOD. a, Ekman pumping term during the development phase (August, 
September, October (ASO)) averaged over the southwestern tropical Indian Ocean (10° S to 0° and 50° E to 80° E) regressed onto the M-index over the 
present-day (1900–1999, blue bars) and future (2000–2099, red bars) climate in the 20 selected models. A total of 17 out of the 20 selected models 
(85%) simulate decreased Ekman pumping during future moderate pIOD events. Models that simulate an increase are indicated by green circles. The 
associated multimodel mean decrease of 30% is statistically significant above the 95% confidence level according to a bootstrap test. Models from 
CMIP6 are indicated in purple. A time-series of the Ekman pumping term is normalized before regression. The error bar in the multimodel mean represents 
the 95% confidence level determined by a bootstrap test. b, A map of the intermodel correlation coefficients between the ASO warming pattern and the 
change in the S-index variability. The warming pattern is defined as the change in SST between the future and present-day. The S-index variability change 
and warming pattern have been scaled by the corresponding increase in global mean SST in each model. Correlation coefficients of ±0.38, ±0.45 and 
±0.57 are significant at the 90%, 95% and 99% confidence levels, respectively. c, The statistically significant relationship between the intensity of ASO 
SST warming pattern and the change in s.d. of the S-index is shown, with the correlation (Cor) and its P-value indicated. The intensity of the SST warming 
pattern over 20° S to 20° N and 40° E to 100° E in each model is obtained by regressing onto the multimodel mean SST warming pattern in the same 
domain; the S-index variability change and warming pattern have been scaled by the corresponding increase in global mean SST in each model, taken as 
the intensity of global warming (GW).
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trends and changes in S-index variability show that a greater inten-
sity of the warming pattern leads to a great increase in S-index vari-
ability (Fig. 4b,c).

Conclusions
Our finding of an opposite response to greenhouse warming—with 
increased SST variability of strong pIOD events but decreased SST 
variability of moderate pIOD events—is in stark contrast with pre-
vious findings of no consensus using the DMI. Our robust result 
arises from a separation of the two types of pIOD events that are 
governed by different dynamics, which provides a physical basis for 
selecting models used in our pIOD future projections. This pro-
jected change of a reduced frequency of moderate pIOD but with 
more occurrences of stronger pIOD events has far-reaching impli-
cations for climate and weather extremes over regions influenced 
by the pIOD. For example, severe floods in eastern African regions 
and devastating bushfires in Australia, as seen in 2019, are likely to 
occur more frequently.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41558-020-00943-1.

Received: 18 March 2020; Accepted: 29 September 2020;  
Published online: 30 November 2020

references
 1. Saji, N. H., Goswami, B. N., Vinayachandran, P. N. & Yamagata, T. A dipole 

mode in the tropical Indian Ocean. Nature 401, 360–363 (1999).
 2. Webster, P. J., Moore, A. M., Loschnigg, J. P. & Leben, R. R. Coupled 

ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature 
401, 356–360 (1999).

 3. Schott, F. A., Xie, S.-P. & McCreary Jr, J. P. Indian Ocean circulation and 
climate variability. Rev. Geophys. https://doi.org/10.1029/2007RG000245 (2009).

 4. Ummenhofer, C. C. et al. What causes southeast Australia’s worst droughts? 
Geophys. Res. Lett. https://doi.org/10.1029/2008GL036801 (2009).

 5. Ashok, K., Guan, Z. & Yamagata, T. Influence of the Indian Ocean Dipole on 
the Australian winter rainfall. Geophys. Res. Lett. https://doi.org/10.1029/ 
2003GL017926 (2003).

 6. Cai, W., Cowan, T. & Raupach, M. Positive Indian Ocean Dipole events 
precondition southeast Australia bushfires. Geophys. Res. Lett. https://doi.
org/10.1029/2009GL039902 (2009).

 7. Abram, N. J. et al. Seasonal characteristics of the Indian Ocean Dipole during 
the Holocene epoch. Nature 445, 299–302 (2007).

 8. Abram, N. J., Gagan, M. K., Cole, J. E., Hantoro, W. S. & Mudelsee, M. 
Recent intensification of tropical climate variability in the Indian Ocean. Nat. 
Geosci. 1, 849–853 (2008).

 9. Behera, S. K. et al. Paramount impact of the Indian Ocean Dipole on the East 
African short rains: A CGCM study. J. Clim. 18, 4514–4530 (2005).

 10. Hashizume, M., Chaves, L. F. & Minakawa, N. Indian Ocean Dipole drives 
malaria resurgence in East African highlands. Sci. Rep. 2, 269 (2012).

 11. Abram, N. J., Gagan, M. K., McCulloch, M. T., Chappell, J. & Hantoro, W. S. 
Coral Reef Death during the 1997 Indian Ocean Dipole Linked to Indonesian 
Wildfires. Science 301, 952–955 (2003).

 12. Page, S. E. et al. The amount of carbon released from peat and forest fires in 
Indonesia during 1997. Nature 420, 61–65 (2002).

 13. Wang, G., Cai, W., Yang, K., Santoso, A. & Yamagata, T. A unique feature of 
the 2019 extreme positive Indian Ocean Dipole event. Geophys. Res. Lett. 
https://doi.org/10.1029/2020GL088615 (2020).

 14. Richards, L. Brew, N. & Smith, L. 2019–20 Australian Bushfires—Frequently 
Asked Questions: a Quick Guide (Parliament of Australia, 2020); https://www.
aph.gov.au/About_Parliament/Parliamentary_Departments/Parliamentary_
Library/pubs/rp/rp1920/Quick_Guides/AustralianBushfires

 15. Cai, W. et al. Projected response of the Indian Ocean Dipole to greenhouse 
warming. Nat. Geosci. 6, 999–1007 (2013).

 16. Zheng, X.-T. et al. Indian Ocean dipole response to global warming in the 
CMIP5 multimodel ensemble. J. Clim. 26, 6067–6080 (2013).

 17. Hui, C. & Zheng, X.-T. Uncertainty in Indian Ocean Dipole response to 
global warming: the role of internal variability. Clim. Dyn. 51, 3597–3611 
(2018).

 18. Vecchi, G. A. & Soden, B. J. Global warming and the weakening of the 
tropical circulation. J. Clim. 20, 4316–4340 (2007).

 19. Xie, S.-P. et al. Global warming pattern formation: sea surface temperature 
and rainfall. J. Clim. 23, 966–986 (2010).

 20. Cai, W. et al. Increased frequency of extreme Indian Ocean Dipole events due 
to greenhouse warming. Nature 510, 254–258 (2014).

 21. Weller, E. et al. More-frequent extreme northward shifts of eastern Indian 
Ocean tropical convergence under greenhouse warming. Sci. Rep. 4,  
6087 (2014).

 22. Du, Y., Cai, W. & Wu, Y. A new type of the Indian Ocean Dipole since the 
mid-1970s. J. Clim. 26, 959–972 (2013).

 23. Anil, N., Kumar, R., R., M., Sajeev, R. & Saji, P. K. Role of distinct flavours of 
IOD events on Indian summer monsoon. Nat. Hazards 82, 1317–1326 (2016).

 24. Verdon-Kidd, D. C. On the classification of different flavours of Indian Ocean 
Dipole events. Int. J. Climatol. 38, 4924–4937 (2018).

 25. Endo, S. & Tozuka, T. Two flavors of the Indian Ocean Dipole. Clim. Dyn. 46, 
3371–3385 (2016).

 26. Du, Y., Xie, S.-P., Huang, G. & Hu, K. Role of air–sea interaction in the long 
persistence of El Niño–induced north Indian Ocean warming. J. Clim. 22, 
2023–2038 (2009).

 27. Yang, K. et al. Oceanic processes in ocean temperature products key to a 
realistic presentation of positive Indian Ocean Dipole nonlinearity. Geophys. 
Res. Lett. 46, e2020GL089396 (2020).

 28. Karamperidou, C., Jin, F.-F. & Conroy, J. L. The importance of ENSO 
nonlinearities in tropical pacific response to external forcing. Clim. Dyn. 49, 
2695–2704 (2017).

 29. Cai, W. et al. Increased variability of eastern Pacific El Niño under 
greenhouse warming. Nature 564, 201–206 (2018).

 30. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the 
experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

 31. Eyring, V. et al. Overview of the coupled model intercomparison project 
phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 
1937–1958 (2016).

 32. Abram, N. J. et al. Palaeoclimate perspectives on the Indian Ocean Dipole. 
Quat. Sci. Rev. 237, 106302 (2020).

 33. Doi, T., Behera, S. K. & Yamagata, T. Predictability of the super IOD Event in 
2019 and its link with El Niño Modoki. Geophys. Res. Lett. 47, 
e2019GL086713 (2020).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2020

NATure CLImATe CHANGe | VOL 11 | JANUARY 2021 | 27–32 | www.nature.com/natureclimatechange32

https://doi.org/10.1038/s41558-020-00943-1
https://doi.org/10.1038/s41558-020-00943-1
https://doi.org/10.1029/2007RG000245
https://doi.org/10.1029/2008GL036801
https://doi.org/10.1029/2003GL017926
https://doi.org/10.1029/2003GL017926
https://doi.org/10.1029/2009GL039902
https://doi.org/10.1029/2009GL039902
https://doi.org/10.1029/2020GL088615
https://www.aph.gov.au/About_Parliament/Parliamentary_Departments/Parliamentary_Library/pubs/rp/rp1920/Quick_Guides/AustralianBushfires
https://www.aph.gov.au/About_Parliament/Parliamentary_Departments/Parliamentary_Library/pubs/rp/rp1920/Quick_Guides/AustralianBushfires
https://www.aph.gov.au/About_Parliament/Parliamentary_Departments/Parliamentary_Library/pubs/rp/rp1920/Quick_Guides/AustralianBushfires
http://www.nature.com/natureclimatechange


ArticlesNATUrE ClIMATE CHANgE

methods
Data, models and EOF analysis. We use four SST reanalysis products to construct 
pIOD patterns, covering a common period from 1982 to 2015. Most of these 
products are produced in a system that specifically considers the impact of 
subsurface ocean temperature on SST, which is essential for the nonlinear oceanic 
feedback responsible for the pIOD dominated by cold SST anomalies, that is, 
strong pIOD episodes. The only exception is OISST, which although not derived 
from a system explicitly with a subsurface ocean, assimilates weekly observations 
from different platforms including satellites, ships and buoys. For each of these four 
data, anomalies are constructed with reference to the mean of the full period, and 
then detrended. A multiproduct average of the anomalies is then calculated. These 
products are:
•	 GODAS (NCEP Global Ocean Data Assimilation System from 1980 to 2019) 

(ref. 34);
•	 ORA-S5 (ECMWF Ocean Reanalysis System 5 from 1979 to 2018) (ref. 35);
•	 OISST v2 (NOAA Optimum Interpolation SST version 2 from 1982 to 2019) 

(ref. 36);
•	 SODA3.3.1 (Simple Ocean Data Assimilation version 3.3.1 from 1980 to 2015) 

(ref. 37).
To assess the impact of greenhouse warming on pIOD changes, we take outputs 

from 35 CMIP5 (ref. 30) and 19 CMIP6 (ref. 31) coupled global climate models 
forced with historical anthropogenic and natural forcings, and future greenhouse 
gases under RCP8.5 for CMIP5 and SSP5–8.5 for CMIP6, covering a 200-year 
period of 1900–2099 (refs. 30,31). Monthly anomalies referenced to the climatology 
of 1900–1999 were constructed and quadratically detrended.

We apply EOF analysis38 to the SON average of SST anomalies in an equatorial 
Indian Ocean domain (5° S to 5° N, 40° E to 100° E), which yield the two dominant 
modes, each with a principal pattern and a PC scaled to unity. The two PC 
time-series display a nonlinear relationship. A combination of the two EOFs is 
used to describe the two types of pIOD. Indices of moderate and strong pIOD are 
described by the M-index ((PC1 – PC2)/

ffiffiffi
2

p
I

) and the S-index ((PC1 + PC2)/
ffiffiffi
2

p
I

), 
respectively. The two indices separate the pIOD events identified by the DMI into 
two groups: strong events such as 1994, 1997 and 2006 in the S-index (red curve), 
and moderate events such as 1982, 1987 and 2015 events (green curve) in the 
M-index (Fig. 1d). Using these ocean-model-based products identifies the 2006 
event as a strong pIOD, as opposed to a moderate one using non-oceanic-based 
products20. Data for the 2019 pIOD event are available in GODAS (ref. 34), and a 
pattern regression onto EOF1 and EOF2 shows it to be a strong pIOD, second only 
to the 1997 event (Fig. 1c).

Heat budget analysis. We examine the surface heat balance of the tropical Indian 
Ocean, which is expressed as:

∂Ta=∂t ¼ �
ua∂Ta=∂x þ u∂Ta=∂x þ ua∂T=∂x
� 

þ va∂Ta=∂y þ v∂Ta=∂y þ va∂T=∂y
� 

þ wa∂Ta=∂z þ w∂Ta=∂z þ wa∂T=∂z
� 

2
64

3
75þ Qþ residual ð1Þ

The variables T, u, v and w are the potential temperature and the zonal, 
meridional and vertical ocean current velocities, respectively, averaged over 
the top 50 m (vertical motion over the top 50 m is represented by w at 50 m). 
The vertical gradient of climatological temperature d�T=dzð Þ

I
 is taken as the 

difference between the average over the top 50 m and temperature at 60 m depth. 
Differential operators, x, y, z, and t represent zonal, meridional and vertical 
directions, and time, respectively. All variables are from the ECMWF ORA-S5 
dataset35 at a horizontal resolution of 1° latitude by 1° longitude for the period 
of 1979 to 2018. The rate of change of the mixed-layer temperature d�T=dtð Þ

I
 

is calculated using a centred-difference approximation. The superscript a and 
overbar denote anomalous and long-term averaged quantities, respectively. The 
tendency of the surface temperature is balanced by zonal advection of heat by 
the zonal currents (first bracketed terms on the right-hand side), meridional 
advection (second bracketed terms), vertical advection (third bracketed terms), 
the net surface air–sea heat flux (Q) and all other factors not explicitly  
expressed (residual), such as mixing and diffusion. We examine the heat budget 
terms averaged over the developing period of IOD events (August to October), 
which contributes most to the mature SST anomalies. All variables in (1) are 
linearly detrended.

We first examine the heat budget for the observations in an area average 
over the equatorial region (10° S to 10° N and 40° E to 100 °E). For strong pIOD 
events, nonlinear zonal and vertical advection terms are particularly important 
for generating cold anomalies in the equatorial eastern Indian Ocean20, 
and Ekman pumping plays a key role in the generation of warm anomalies 
(Extended Data Fig. 3a). For moderate pIOD events, Ekman pumping dominates 
warming (Extended Data Fig. 3a). Inspection of d�T=dt

I
 finds that the region 

where maximum warming tendency occurs is in the southwestern tropical 
Indian Ocean (10° S to 0°, 50° E to 80° E, green box of Extended Data Fig. 3b,c). 
Propagation into the region of downwelling Rossby waves driven by equatorial 
easterly anomalies associated with a developing pIOD, and their subsequent 

reflection at the western boundary as downwelling equatorial Kelvin waves 
induce the broad surface warming26. That Ekman pumping in the southwestern 
tropical Indian Ocean is an important term in the total tendency, and is driven 
by equatorial easterly anomalies, is reaffirmed by a simple analysis (Extended 
Data Fig. 3d–f).

We then examine the heat budget for climate models. Data from all models 
have been interpolated to a horizontal grid of 1° × 1° (bilinear interpolation) 
and a vertical grid with 5 m intervals (linear interpolation). The vertical velocity 
w at 50 m is used to represent the vertical motion over the upper 50 m layer. 
Monthly anomalies of w and zonal wind stress are calculated with reference to the 
1900–1999 climatology and quadratically detrended. As in observations, nonlinear 
equatorial zonal and vertical advection are dominant in forcing strong pIOD 
events, and these terms increase under greenhouse warming20.

For the present-day and future model climate, we take the climatological 
mean temperature �Tð Þ

I
 as the average over the 1900–1999 and 2000–2099 periods, 

respectively. There is a general decrease in the response of zonal wind stress to 
SST in the equatorial eastern Indian Ocean, as a consequence of a more stable 
atmosphere that results from a faster warming in the lower troposphere than at 
the surface under greenhouse warming16. The associated decrease in variability 
of zonal wind stress anomalies, which drive Ekman pumping that dominates 
moderate pIOD events, leads to decreased variability of moderate pIOD in the 
future climate. In the 20 selected models, 19 models generate a future decrease of w 
variability in the development phase over the southwestern tropical Indian Ocean 
(green box, Extended Data Fig. 3b). A bootstrap test finds that the multimodel 
mean decrease of 21% is statistically significant. By contrast, for strong pIOD 
events, equatorial nonlinear zonal and vertical advection occurs more frequently 
as a consequence of faster warming in the northwestern equatorial Indian Ocean 
under greenhouse warming20.

Nonlinear dynamics and model selection. During strong pIOD events, the 
initial cooling grows such that it extends northward first and then westward along 
the equator, triggering the equatorial nonlinear ocean–atmosphere feedback: an 
equatorial west-minus-east zonal SST gradient drives easterly anomalies, leading 
to nonlinear vertical and nonlinear zonal advection extending the cold anomalies 
along the equatorial eastern Indian Ocean13,20,27, as represented by PC2. The 
dynamics that govern PC2 and the associated pattern depends nonlinearly on cold 
anomalies presented in PC1 that first grow northwest towards and then westward 
along the equator, such that PC2(t) = α[PC1(t)]2 + βPC1(t) + γ. For the observed, 
the value of α is 0.42 (Fig. 1c); a greater value of α means a clearer separation of the 
two types of the pIOD events.

Not all models produce the nonlinear dynamics that separate the strong and 
moderate pIOD events, and most models produce a weaker nonlinearity than 
seen in the observed. We select 20 CMIP5 and CMIP6 models that simulate an 
α, calculated over the 200 years, greater than half of the observed value. The 20 
selected models together yield a mean α amplitude of 0.31 (Fig. 2c). A total of 30 
models simulate an α greater than 33% of the observed value and we use this group 
to test the sensitivity of our results.

Statistical significance test. A bootstrap method39 is used to examine whether 
the increased S-index variance and decreased M-index variance are statistically 
significant. The 20 s.d. values of the S- and M-index in the present-day 
climate (1900–1999) from the 20 selected models are resampled randomly to 
construct 10,000 realizations of the mean standard deviation. In this random 
resampling process, a model is allowed to be selected again. The s.d. of the 10,000 
interrealizations of mean s.d. in the present-day climate is 0.0312 for the S-index 
(0.0157 for the M-index). The same test is carried out for the future climate (2000–
2099) and the s.d. of the interrealization is 0.0212 for the S-index (0.0185 for the 
M-index). The increased s.d. for the S-index (or decreased s.d. for the M-index) in 
the future period is greater than the sum of the two s.d. values, indicating statistical 
significance above the 95% confidence level.

Data availability
Data relevant to the paper can be downloaded from websites listed below:
OISST v2 at https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html;
ORA-S5 at https://icdc.cen.uni-hamburg.de/daten/reanalysis-ocean/
easy-init-ocean/ecmwf-oras5.html;
SODA3.3.1 at https://www2.atmos.umd.edu/~ocean/index_files/soda3.3.1_mn_
download.htm;
GODAS at https://www.esrl.noaa.gov/psd/data/gridded/data.godas.html;
CMIP5 database at http://www.ipcc-data.org/sim/gcm_monthly/AR5/;
CMIP6 database at https://esgf-node.llnl.gov/projects/cmip6/;
19 CMIP6 models are used in this study, including: MRI-ESM2–0 (refs. 40,41); 
CNRM-ESM2–1 (refs. 42,43); CNRM-CM6–1 (refs. 44,45); BCC-CSM2-MR (refs. 46,47); 
EC-Earth3-Veg (refs. 48,49); NorESM2-LM (refs. 50,51); MIROC6 (refs. 52,53); CESM2 
(refs. 54,55); CAMS-CSM1-0 (refs. 56,57); CESM2-WACCM (refs. 58,59); MIROC-ES2L 
(refs. 60,61); IPSL-CM6A-LR (refs. 62,63); INM-CM4-8 (refs. 64,65); INM-CM5-0 (refs. 
66,67); CanESM5 (refs. 68,69); MPI-ESM1-2-LR (refs. 70,71); UKESM1-0-LL (refs. 72,73); 
MCM-UA-1-0 (refs. 74,75); GFDL-CM4 (refs. 76,77).
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Code availability
Codes for calculating EOF, the parameter |α| can be downloaded from https://
drive.google.com/open?id=1d2R8wKpFNW-vMIfoJsbqIGPIBd9Z_8rj.
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Extended Data Fig. 1 | Characteristics of strong pIOD events. a–c, SON SST anomalies (°C, color shading) and wind stress anomalies (N m−2, vectors) 
for the 1994, 1997, and 2006 strong pIOD event, respectively. The pattern is dominated by strong cooling in the equatorial eastern Indian Ocean. Strong 
equatorial easterly anomalies extend to the central-western Indian Ocean. The anomalies are referenced to the average over the 1982–2015 period. d–f, 
SON SST anomalies (in °C) relative to the SST threshold for tropical convection, defined as the SON SST average over 20°S to 20°N, for the 1994, 1997, 
and 2006 strong pIOD event, respectively. Areas with SST lower than the convection threshold have been masked; there is a large area of suppressed 
convection in the equatorial eastern Indian Ocean. g–i, Equatorial vertical potential temperature anomalies (in °C) over SON of 1994, 1997, and 2006, 
respectively. The equatorial vertical potential temperature is calculated as the average between 2.5°S to 2.5°N. Strong equatorial cooling is seen in the 
eastern Indian Ocean. Vertical potential temperature and wind stress data are from ORA-S5.
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Extended Data Fig. 2 | Characteristics of moderate pIOD events. a–c, SON SST anomalies (°C, color shading) and wind stress anomalies (N m−2, 
vectors) for the 1982, 1987, and 2015 moderate pIOD event, respectively. The pattern is dominated by a broad-scale warming over the western Indian 
Ocean. Easterly anomalies are confined to the equatorial central-eastern Indian Ocean. The anomalies are referenced to the average over the 1982–2015 
period. d–f, SON SST anomalies (in °C) relative to SST threshold for tropical convection, defined as SON SST average over 20°S to 20°N for 1982, 1987, 
and 2015 moderate pIOD event, respectively. Areas with SST lower than the convection threshold have been masked; there is a small area of suppressed 
convection in the equatorial southeastern Indian Ocean. g–i, Equatorial vertical potential temperature anomalies (in °C) over SON of 1982, 1987, and 2015, 
respectively. The equatorial vertical potential temperature is calculated as the average between 2.5°S to 2.5°N. There is a general lack of cooling in the 
equatorial eastern Indian Ocean as cooling occurs only off Sumatra-Java. Vertical potential temperature and wind stress data are from ORA-S5.
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Extended Data Fig. 3 | Heat budget analysis based on observations. a, Composite of heat budget terms over the equatorial Indian Ocean (10°S–10°N, 
40°E–100°E) in August-September-October (ASO). The uncertainty bar on each composite represents the range over the three strong or three moderate 
pIOD events. b, c, Composite of ASO temperature tendency during strong and moderate pIOD events. The green box marks the area where the main warm 
temperature tendency is located over the southwestern Indian Ocean (10°S–0°, 50°E–80°E). d, Relationship between normalized temperature tendency 
and the Ekman pumping term in ASO averaged over the main warming area in the southwestern Indian ocean (10°S–0°, 50°E–80°E, green box in c), with 
statistical properties shown. e, Map of ASO correlation coefficients between the Ekman pumping term averaged over 10°S–0°, 50°E–80°E and zonal 
wind stress (TauX) anomalies. Correlation coefficients of ±0.27, ±0.32, ±0.41 are statistically significant at the 90%, 95%, and 99% confidence levels, 
respectively. The area indicated by the red box is used to calculate the average zonal wind stress anomalies. f, Time series of normalized ASO Ekman 
pumping term averaged over the western Indian Ocean (10°S–0°, 50°E–80°E) (red curve) and zonal wind stress (TauX) anomalies averaged over the 
equatorial Indian Ocean (5°S–5°N, 60°E–100°E, red box in e) (green curve). The Ekman pumping term has been multiplied by −1 for plotting. The data 
used in this figure are from ORA-S5 for the period of 1979–2018.
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Extended Data Fig. 4 | Anomaly patterns of strong and moderate pIOD in some selected models. A composite of SON SST anomalies (°C) for strong 
pIOD with an S-index>1.5 s.d. and moderate pIOD with an M-index>1.25 s.d. in a CESM1-BGC, b CNRM-CM5, c GFDL-ESM2M, d MPI-ESM-LR. Left 
panels show strong pIOD and right panels show moderate pIOD. These show that anomaly patterns can be rather different from one model to another.
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Extended Data Fig. 5 | uncertainty in projected pIOD SST using the DmI. a, Comparison of the standard deviation of the DMI in the present-day (1900–
1999) and future (2000–2099) climate in 20 models that simulate a nonlinear coefficient α greater than 50% of the observed in the quadratic fit between 
the first two principal components (PC1 and PC2) from EOF analysis on SON SST anomalies, PC2(t) = α [PC1(t)]2+β PC1(t) + γ. Although a total of 15 out 
of the 20 selected models simulate lower DMI variability in the future period (red bars) than in the present-day climate (blue bars), the multi-model mean 
decrease is not statistically significant. The error bar represents the 95% confidence level. Models that simulate an increase in variability are indicated 
by green circles. Models from CMIP6 are shown in purple. b, Same as a, but for 34 models that simulate an α smaller than 50% of the observed value. A 
total of 17 out of the 34 models (50%) simulate smaller variability in the DMI in the future period than in the present-day period. There is no inter-model 
consensus, and the multi-model mean change is not statistically significant.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Projected change in pIOD frequency. a, Moderate and b, strong pIOD using a threshold of M-index>1.25 s.d. and S-index>1.5 s.d., 
respectively. Shown is the comparison of frequency (events per 100 years) in the present-day (1900–1999) and future (2000–2099) climate in the 20 
selected models, that is, with an α greater than 50% of the observed value. A total of 17 out of the 20 models (85%) simulate a decreased frequency in 
moderate pIOD events, with a statistically significant decrease of 52% in the multi-model mean, from 9.60 events per 100 years in the present-day (blue 
bars) to 4.65 events per 100 years (red bars) in the future climate. By contrast, a total of 16 out of the 20 models (80%) simulate an increased frequency 
in strong pIOD events, with a statistically significant increase of 66% in the multi-model average, from 7.5 events per 100 years in the present-day (blue 
bars) to 12.45 events per 100 years (red bars) in the future climate. Models that simulate an opposite change to the multi-model mean are indicated by 
green circles. c, Same as a, but using a threshold of M-index>1.5 s.d. A total of 18 out of the 20 selected models (90%) simulate a decreased frequency 
in moderate pIOD events, with a statistically significant decrease of 60% in the multi-model ensemble mean. d, Same as b, but using a threshold of 
S-index>1 s.d. A total of 18 out of the 20 models (90%) simulate an increased frequency in strong pIOD, with a statistically significant increase of 44% in 
the multi-model ensemble mean. Models from CMIP6 are indicated in purple.
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Extended Data Fig. 7 | Sensitivity of projected changes in pIOD variability to model selections. a, b, Comparison of variability of the moderate pIOD 
(M-index) and strong pIOD (S-index), respectively, in the present-day (1900–1999) and future (2000–2099) climate in 30 models that simulate a 
nonlinear coefficient α greater than 33.3% of the observed value. In a, a total of 27 out of the 30 models (90%) simulate a decrease in M-index variability 
in the future period (red bars) from that in the present-day period (blue bars). This leads to a multi-model mean decrease of 17%, statistically significant 
above the 95% confidence level, as indicated by the error bars. In b, a total of 23 out of the 30 selected models (77%) simulate an increase in S-index 
variability in the future climate, with a multi-model mean increase of 19%, statistically significant above the 95% confidence level. Models from CMIP6 are 
indicated in purple. Models that simulate an opposite change to the multi-model mean are indicated by green circles.
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Extended Data Fig. 8 | Sensitivity of projected changes in pIOD variability to emission scenario. Shown are results for emission scenario RCP 4.5. 
a, b, Comparison of variability of the moderate pIOD (M-index) and strong pIOD (S-index), respectively, in the present-day (1900–1999) and future 
(2000–2099) climate in 15 out of 33 CMIP5 models that simulate a nonlinear coefficient α greater than 50% of the observed value. In a, a total of 14 out 
of the 15 models (93%) simulate a decrease in M-index variability in the future period (red bars) from that in the present-day period (blue bars). This 
leads to a multi-model mean decrease of 13%, statistically significant above the 95% confidence level, as indicated by the error bars. In b, a total of 13 out 
of the 15 selected models (87%) simulate an increase in S-index variability in the future climate, with a multi-model mean increase of 16%, statistically 
significant above the 95% confidence level. Models that simulate an opposite change to the multi-model mean are indicated by green circles. A total of 33 
CMIP5 models are used here as outputs from CMCC-CESM and FGOALS-g2 are unavailable.
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Extended Data Fig. 9 | relationship between projected changes in eNSO and in pIOD. a, Scatter plot of changes in September, October, and November 
(SON) S-index variability versus changes in SON Ni~no3.4 index variability. The change is defined as the difference between the present-day (1900–
1999) and future (2000–2099) period scaled by the corresponding increase in global mean SST in each model. b, Same as a, but between changes in 
SON M-index variability and in SON Ni~no3.4 index variability. c, d, Same as a, b, but for changes in strong pIOD (S-index>1.5 s.d.) or moderate pIOD 
(M-index>1.25 s.d.) frequency (events per 100 years) vs frequency of El Ni~no (Ni~no3.4>1.0 s.d.). The associated correlation coefficient and P-value are 
plotted. There is no relationship between changes in El Niño and S-index in a and c. Although there is a positive correlation in b and d, the changes in 
M-index and in El Niño are in the opposite direction, contravening the relationship between El Ni~no and M-index.
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Extended Data Fig. 10 | Projected mean state change in the tropical Indian Ocean. Shown are averages over the 20 models that simulate a nonlinear 
coefficient α greater than 50% of the observed value. a, Multi-model ensemble averaged mean state changes of SON SST (in °C) between the future 
(2000–2099) and the present-day (1900–1999) climate. b, Same as a, but for the mean state change in surface wind stress (in N m−2); changes in wind 
stress magnitude (in N m−2) are indicated by colors. c, Same as a, but for the mean state change in latent heat flux (in W m−2). d, Same as a, but for 
the mean state change in total heat flux (in W m−2); positive values indicate an upward transfer of energy. Stippled areas indicate where changes are 
statistically significant above the 95% confidence level according to a two-tailed Student’s t-tests.
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