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Abstract
Projecting regional rainfall changes in a warmer climate attracts ongoing attention. However, large uncertainty still exists in 
multi-model projection. In this study, we introduce a bias-corrected method to correct the multi-model projection of changes 
in East Asian summer monsoon (EASM) rainfall based on the historical and RCP8.5 runs of 25 models from phase 5 of 
Coupled Model Intercomparison Project. Firstly, the total rainfall changes are separated into the thermodynamic component 
due to increased specific humidity and the dynamic component due to circulation changes. The thermodynamic component 
is corrected using the observed present-day rainfall and the increase rate of specific humidity based on the wet-get-wetter 
mechanism. On the other hand, the dynamic component with the circulation changes is corrected based on a “spatial emergent 
constraint” method, which is further validated by the perfect model approach. Together, these corrections give an integrated 
projection for EASM rainfall changes under global warming. Such an approach can improve the signal-to-noise ratio of 
projection effectively, from the original 0.73 of the multimodel mean to around 1.9. The corrected projection of EASM 
rainfall changes shows a pronounced increase in southern China, the northwest Pacific and a belt from northern China to 
northeastern China, and a weak increase in other EASM regions.
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1 Introduction

Precipitation is sensitive to climate change (Wu et al. 2013). 
Under global warming, global average precipitation is likely 
to increase by 1–3% °C−1 over the 21st century (Held and 
Soden 2006). On regional scales, considerable uncertain-
ties still exist in precipitation projections, reflected by large 
spread among the models from phase 5 of the Coupled 
Model Intercomparison Project (CMIP5) (Kent et al. 2015). 
Unreliable regional rainfall projection is an ongoing prob-
lem. Improving our comprehension of the underlying physi-
cal processes, as well as reducing model biases, will improve 
the confidence of regional projections (Xie et al. 2015).

East Asian summer monsoon (EASM), as an independent 
component in the Asian monsoon system, contributes nearly 
half of the annual precipitation in China (Ding and Chan 
2005; de Carvalho 2016). Climate models project a robust 
increase in EASM rainfall due to global warming (Ueda 
et al. 2006; Hsu et al. 2012; Chen and Sun 2013; Kitoh et al. 
2013; Kusunoki and Mizuta 2013; Seo et al. 2013; Endo 
and Kitoh 2014; Wang et al. 2014). Previous studies pro-
posed several mechanisms for the changes in the large-scale 
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hydrological cycle under global warming. For example, the 
wet-get-wetter mechanism named the thermodynamic effect 
emphasizes the increases in low-tropospheric water vapor 
under global warming, increasing rainfall in convection 
zones (Chou and Neelin 2004; Held and Soden 2006). How-
ever, such increased levels of global mean rainfall at a rate 
of 1–3% °C−1 will be limited by the simultaneous increase 
in radiative energy, which is lower than the rate of enhanced 
specific humidity at nearly 7% °C−1 (e.g., Allen and Ingram 
2002). These different rates of change should lead to a slow-
down in atmospheric circulation (Vecchi et al. 2006), which 
in turn will partially offset the increased rainfall induced by 
moister conditions. Another important process, the warmer-
get-wetter mechanism suggests that tropical rainfall changes 
are correlated with the spatial variation of sea surface tem-
perature (SST) warming, because the moist stability change 
is dominated by the SST warming pattern in the tropics (Xie 
et al. 2010; Huang et al. 2013; Huang 2014).

Moreover, for the regional precipitation changes over 
land, more processes related to the relative humidity and 
land-sea temperature contrasts are important factors, which 
complements the “wet-get-wetter” mechanism for the ther-
modynamic component (Byrne and O’Gorman 2013; Rod-
erick et al. 2014; Byrne and O’Gorman 2015).

Moisture budget decomposition is a widely used method 
in studies of precipitation changes (Chou et al. 2009; Seager 
et al. 2010; Huang et al. 2013; Endo and Kitoh 2014; Huang 
2014; Brown et al. 2016; Li and Ting 2017; Zhou et al. 
2018). Zhou et al. (2018) suggested that the EASM rainfall 
changes can be divided into a thermodynamic component 
due to moisture increase and a dynamic component due to 
changes in circulation by employing a simplified moisture 
budget decomposition from Huang et al. (2013). The ther-
modynamic component related to moisture increase is pro-
portional to the local moisture increase rate and the histori-
cal rainfall climatology (Chou et al. 2009, 2013). This result 
implies that we can use the observed rainfall climatology to 
replace the modelled historical rainfall climatology in the 
thermodynamic component to limit the intermodel spread 
of rainfall climatology among the models.

On the other hand, the EASM circulation changes in 
the dynamic component of rainfall changes shows large 
intermodel discrepancies (Mike et al. 1994; Hu et al. 2003; 
Kimoto 2005; Li and Ting 2017), although the skill of simu-
lating EASM circulation is constantly improving (Sperber 
et al. 2013; Song and Zhou 2014; Gao et al. 2015). For long-
term projections, the intermodel uncertainty is the domi-
nant source of uncertainty in projections compared with 
the internal variability and scenario uncertainty (Hawkins 
and Sutton 2009, 2011). Although the multimodel mean 
(MMM) is credited with improving the reliability of pro-
jections (Thomson et al. 2006; Knutti 2010; Collins et al. 
2012), the possible common model biases could affect the 

projections of future climate change in MMM (Zheng et al. 
2011; Li and Xie 2014). In recent years, the “emergent con-
straint” concept, which rely on intermodel relationships 
between the current climate and future change among the 
models, has been widely used to constrain the intermodel 
discrepancies in the future climate change (Bracegirdle and 
Stephenson 2012, 2013; Cox et al. 2013; Klein and Hall 
2015; Hall et al. 2019). Huang and Ying (2015) extended the 
original constraint for regional mean to a spatial emergent 
constraint with a linear ensemble pattern regression method 
to correct regional climate changes projected by MMM. 
The spatial emergent constraint strategy with the ensemble 
pattern regression method establishes the historical–future 
relationships to correct the common change bias linked with 
the common historical bias. It has been shown to efficiently 
improve the robustness when applied to the projection of 
the tropical Pacific SST warming pattern (Huang and Ying 
2015) and could be practicable for the EASM circulation 
changes with apparent spatial pattern.

This paper describes a bias-corrected method to correct 
the changes in EASM precipitation under global warming 
projected by CMIP5 models. First, we divide the total rain-
fall change into thermodynamic and dynamic components by 
adopting the moisture budget decomposition, which has been 
demonstrated to be appropriate in the EASM regions in the 
previous study (Zhou et al. 2018). For the thermodynamic 
component, we use the Clausius–Clapeyron scaling based 
on the wet-get-wetter mechanism (Held and Soden 2006) to 
calculate the rainfall change induced by the increased water 
vapor and use it to replace the thermodynamic component. 
For the dynamic component, we use the spatial emergent 
constraint with the ensemble pattern regression method to 
reduce the uncertainty induced by the common historical 
simulation bias. The perfect model approach is performed 
to validate the method used in the dynamic correction. 
Then, we examine the corrected projection of EASM rain-
fall changes under future global warming of 1.5 °C and 2 °C 
relative to pre-industrial levels. The models and data used 
in our study are presented in Sect. 2. Details of the correc-
tion method are provided in Sect. 3. Section 4 reports the 
consequences of the corrections. Finally, conclusions and 
some further discussion are given in Sect. 5.

2  Models and data

We use the outputs of 25 models from the historical run 
and Representative Concentration Pathway (RCP) 8.5 
run from CMIP5. Details of the 25 models are listed in 
Table 1. The long-term mean at the end of the 20th cen-
tury (1981–2000) and the 21st century (2079–2098) repre-
sent the historical climatology and the future climatology, 
respectively. Their difference is defined in this study as the 
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future change (denoted as Δ) under global warming. The 
monthly outputs of precipitation, surface specific humid-
ity, pressure velocity at the 500 hPa, and surface tempera-
ture, are used. We only select the first realization (r1i1p1) 
of each model. The MMM is calculated as the simple aver-
age of results from all models.

In terms of observations, the rainfall data are from the 
Global Precipitation Climatology Project (GPCP) data-
set (Adler et al. 2003) and the Climate Prediction Center 
(CPC) Merged Analysis of Precipitation (CMAP) dataset 
(Xie and Arkin 1997). The pressure velocity is from the 
National Centers for Environmental Prediction–Depart-
ment of Energy (NCEP–DOE) Atmospheric Model Inter-
comparison Project II reanalysis (Kanamitsu et al. 2002). 
The observations are selected for the period 1981–2000, 
which is the same as the historical run in CMIP5. The 
summer season in this study is defined as the average of 
June, July and August. All the model output and observa-
tional data are interpolated onto a 2.5° × 2.5° grid (from 
90°S to 90°N, 0°E–357.5°E) using bilinear interpolation 
before analysis.

3  Methods

3.1  Moisture budget decomposition

To correct the projections of EASM rainfall changes ( ΔP ), 
we apply a simplified moisture budget decomposition (Huang 
et al. 2013) to divide the ΔP into two parts: the thermodynamic 
component and the dynamic component. Other relatively small 
terms, such as the changes in evaporation ( ΔE ), are omitted in 
this simplified decomposition (Zhou et al. 2018). This simpli-
fied moisture budget decomposition estimates the ΔP similarly 
to the complete moisture budget decomposition in Chou et al. 
(2009) in the EASM regions, therefore it is appropriate for 
the studies in the EASM regions (Zhou et al. 2018). It can be 
written as:

where P is precipitation, q is the surface specific humidity 
and ω is the pressure velocity at 500 hPa. The �w and g are 

(1)ΔP = −
1

�wg
(Δq ⋅ � + q ⋅ Δ�)

Table 1  List of the 25 CMIP5 models used in this study

Model Institute Resolution 
(Lon × Lat, 
levels)

ACCESS1.0
ACCESS1.3

CSIRO (Commonwealth Scientific and Industrial Research Organisation, Australia), and BOM (Bureau 
of Meteorology, Australia)

192 × 145, L38
192 × 145, L38

BCC-CSM1.1 Beijing Climate Center, China Meteorological Administration 128 × 64, L26
BNU-ESM College of Global Change and Earth System Science, Beijing Normal University 128 × 64, L26
CanESM2 Canadian Centre for Climate Modelling and Analysis 128 × 64, L35
CCSM4 National Center for Atmospheric Research 288 × 192, L27
CESM1(BGC)
CESM1(CAM5)

National Science Foundation, Department of Energy, National Center for Atmospheric Research 288 × 192, L27
288 × 192, L27

CNRM-CM5 Centre National de Recherches Meteorologiques/Centre Europeen de Recherche et Formation Avan-
cees en Calcul Scientifique

256 × 128, L31

CSIRO Mk3.6.0 Commonwealth Scientific and Industrial Research Organisation in collaboration with the Queensland 
Climate Change Centre of Excellence

192 × 96, L18

GFDL CM3
GFDL-ESM2G
GFDL-ESM2M

Geophysical Fluid Dynamics Laboratory 144 × 90, L48
144 × 90, L24
144 × 90, L24

GISS-E2-H
GISS-E2-R

NASA Goddard Institute for Space Studies 144 × 90, L40
144 × 90, L40

HadGEM2-ES Met Office Hadley Centre 192 × 145, L38
IPSL-CM5A-LR
IPSL-CM5A-MR
IPSL-CM5B-LR

Institut Pierre-Simon Laplace 96 × 96, L39
144 × 143, L39
96 × 96, L39

MIROC5 Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environ-
mental Studies, and Japan Agency for Marine-Earth Science and Technology

256 × 128, L40

MIROC-ESM
MIROC-ESM-CHEM

Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute 
(The University of Tokyo), and National Institute for Environmental Studies

128 × 64, L80
128 × 64, L80

MRI-CGCM3 Meteorological Research Institute 320 × 160, L48
NorESM1-ME
NorESM1-M

Norwegian Climate Centre 144 × 96, L26
144 × 96, L26
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the density of water and standard gravity. The −Δq ⋅ � asso-
ciated with the direct effect of moisture is the thermody-
namic component, i.e. the component contributed by the 
“wet-get-wetter” mechanism (Chou and Neelin 2004; Held 
and Soden 2006), and the −q ⋅ Δ� associated with circula-
tion change is the dynamic component (Held and Soden 
2006; Chou et al. 2009; Seager et al. 2010; Huang et al. 

2013; Endo and Kitoh 2014). For simplicity, the constant 
coefficient 1

�wg
 of Eq. (1) will be omitted in following study, 

but it still participates in the calculation.

(a) (b)

(c) (d)

Fig. 1  a Multimodel mean (MMM) and b signal-to-noise (SNR) 
of the original summer-mean precipitation change ( ΔP ) of the 25 
CMIP5 models under the RCP8.5 scenario, and c MMM and d SNR 

of the ΔP reconstructed by the thermodynamic and dynamic decom-
position shown in Eq.  (1). Root-mean-square (RMS) of the SNR of 
the ΔP is shown at the top-right corner of (d) 
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3.2  Correction for the thermodynamic component

According to the “wet-get-wetter mechanism” (Chou and 
Neelin 2004; Held and Soden 2006), the thermodynamic 
component of precipitation increases follow the rate of water 
vapor increase rate under global warming based on the Clau-
sius–Clapeyron scaling. Here, we define a “thermodynamic 
constraint” to correct the thermodynamic component. The 
“thermodynamic constraint” method substitutes the ther-
modynamic component in Eq. (1) with (Δq∕q) ⋅ Pobs , where 
Δq∕q is the change rate of water vapor in each model basi-
cally following the Clausius–Clapeyron scaling (Chou and 
Neelin 2004; Held and Soden 2006) and Pobs is the present-
day climatology of precipitation in the observation. Because 
rainfall datasets observed by satellites are more reliable than 
the available pressure velocity datasets. Therefore, we selected 
rainfall to replace pressure velocity in the correction for the 
thermodynamic component. The inconsistency between the 
pressure velocity at 500 hPa and rainfall mainly appears in 
climatological descending regions (Supplementary Material 
Fig. S1). As a result, the correction of thermodynamic com-
ponent is feasible in the EASM region with adequate rainfall.

3.3  Correction for the dynamic component

For the dynamic component, we use an extended constraint 
strategy, the spatial emergent constraint (Huang and Ying 

2015), to correct the circulation change ( Δ� ; pressure veloc-
ity change at 500 hPa) within the dynamic component. The 
ensemble pattern regression method builds up historical-
future relationships to estimate the common change bias that 
can then be used to correct the projection of future change 
(Huang and Ying 2015).

To validate the robustness for the dynamic correction, 
the perfect model approach is applied. The perfect model 
approach is also named leave-one-out cross validation, 
widely used in previous studies on emergent constraint pro-
jections (Räisänen et al. 2010; Abe et al. 2011; Bracegirdle 
and Stephenson 2012). This approach leaves out each of the 
25 models in turn and treats it as a “perfect” target model. 
The historical variable (precipitation in this study) simulated 
in the target model is treated as the observation in the correc-
tion for the other 24 models, and the future change (pressure 
velocity change at 500 hPa in this study) projected by the 
target model is treated as a “perfectly” projected change in 
future to compare with the corrected results for the other 
models. We calculate the root mean square error (RMSE) 
between the projection corrected by the ensemble pattern 
regression and the “perfectly” projected change for each 
target model, and compare it with the RMSEs between the 
original MMM of the other 24 models before correction 
and the “perfectly” projected change in the target model to 
validate whether the spatial emergent constraint correction 
can make the multi-model projection closer to the “perfect” 
future changes.

(a) (b)

Fig. 2  MMM of a the thermodynamic component in ΔP of the 25 CMIP5 models and b MMM of (Δq∕q) ⋅ Pobs used in the correction for the 
thermodynamic component
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3.4  Metrics of intermodel uncertainty

In this study, the signal-to-noise ratio (SNR), defined as the 
ratio of multi-model mean and intermodel standard deviation 
of the 25 CMIP5 models, is applied to illustrate the robust-
ness of the projection (e.g., Hu et al. 2003; Long et al. 2016; 

Huang 2017). To show the change of SNR more intuitive, 
the root-mean-square (RMS) of the SNR for all grids within 
the EASM regions is calculated to measure the effect of each 
correction step in the whole EASM domain.

(a) (b)

Fig. 3  a MMM and b SNR of summer-mean [ΔP]TH , the total rainfall changes with thermodynamic correction. RMS of the SNR of [ΔP]TH is 
shown at the top-right corner of (b)

(a) (c)(b)

Fig. 4  MMM of a the dynamic component in ΔP of the 25 CMIP5 models, b MMM and c intermodel standard deviation of circulation change 
( Δ�)
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4  Corrections

In order to distinguish the corrected ΔP , the ΔP with only 
thermodynamic correction is represented as [ΔP]TH , the ΔP 
with only dynamic correction is represented as [ΔP]DY , and 
the integrated correction of ΔP is written as [ΔP]TH+DY . 
Figure 1 shows the MMM and SNR of summer-mean ΔP 
(Fig. 1a, b) and the ΔP reconstructed by the thermody-
namic and dynamic decomposition in Eq. (1) (Fig. 1c, d) in 
the EASM regions from the simulations of the 25 CMIP5 
models. The projected ΔP (Fig. 1a) and ΔP calculated by 
moisture budget decomposition (Fig. 1c) are similar and 
exhibit an overall increase in the EASM regions (20°–45°N, 
110°–135°E), except in mid-eastern China. Large intermodel 
spread leads to a low SNR in the EASM regions (Fig. 1b, d). 
The RMS of the SNR of EASM ΔP is only 0.73, suggesting 

quite low robustness in the EASM ΔP projected by the 
MMM of the CMIP5 models (Xie et al. 2015).

4.1  Correction for the thermodynamic component

The thermodynamic component ( −Δq ⋅ � ) of the moisture 
budget decomposition shows a positive effect on the EASM 
ΔP (Fig. 2a). Because the specific humidity changes ( Δq ) 
are positive in the EASM regions, the sign of thermody-
namic component is primarily decided by the historical cir-
culation ( � ). Considerable intermodel spread exists in the � 
of the 25 CMIP5 models, causing major uncertainty in the 
thermodynamic component (Zhou et al. 2018).

In this correction, we use (Δq∕q) ⋅ Pobs to substitute the 
thermodynamic component, in which q is the historical 
specific humidity and Pobs is the present-day observed 

(a) (b) (c)

(d) (e) (f)

Fig. 5  a The observed (GPCP) summer-mean precipitation averaged 
from 1981 to 2000. b As in (a) but for CMAP. c MMM of the sum-
mer-mean precipitation of the 25 CMIP5 models in the historical run 
for 1981–2000. d Common historical bias in the precipitation relative 

to the observation (GPCP). e As in (d) but for CMAP. f Intermodel 
standard deviation of the historical summer-mean precipitation in the 
25 CMIP5 models
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precipitation (GPCP used in this correction). The MMM 
of (Δq∕q) ⋅ Pobs shows a maximum over the coastal region, 
the Yellow Sea and Japan (Fig. 2b). The (Δq∕q) ⋅ Pobs is 
greater than the thermodynamic component represented 
by −Δq ⋅ � (Fig. 2a) possibly due to the widely underesti-
mated EASM rainfall in the models.

We substitute the −Δq ⋅ � in the ΔP with (Δq∕q) ⋅ Pobs 
and show the MMM and SNR of the [ΔP]TH in Fig. 3. The 
maximum of [ΔP]TH (Fig. 3a) locates over the northwest 
Pacific, Korea and northeast China, and the minimum over 
mid-eastern China, with a similar spatial pattern to the origi-
nal ΔP (Fig. 1a). The SNR of [ΔP]TH (Fig. 3b) prominently 
enhances in the EASM regions, and the RMS of the SNR of 
[ΔP]TH reaches 1.39, which is much greater than that of the 
original ΔP (0.73; Fig. 1d).

4.2  Correction for the dynamic component

The main source of uncertainty in the dynamic component 
( −q ⋅ Δ� ) is the circulation change ( Δ� ) in the EASM 
regions (Zhou et al. 2018). We apply the spatial emergent 
constraint and the ensemble pattern regression method to 
correct the Δ� , and then use the perfect model approach to 
validate the method used in the correction.

Figure 4 shows the MMM of dynamic component and 
Δ� . The intermodel spread of Δ� (Fig. 4c) is larger than 
the MMM (Fig. 4b). Two sources of precipitation datasets, 

GPCP and CMAP, are chosen to show the dependence of the 
correction on observational datasets. The common historical 
bias of precipitation is the difference (Fig. 5d, e) between the 
observed precipitation (Fig. 5a, b) and the MMM precipita-
tion in the historical run (Fig. 5c).

We apply an intermodel empirical orthogonal function 
(EOF) analysis to the individual historical rainfall biases 
of the 25 CMIP5 models. The eight leading EOF modes 
are shown in Fig. 6. The individual bias is the difference 
of a variable between the individual model and the MMM. 
The percentage of the variance explained by each mode is 
shown in the top-right corner of each panel, and these eight 
leading EOF modes together explain 93.2% of the variance. 
By projecting the common historical biases in the CMIP5 
models onto these EOF modes, we obtain expansion coef-
ficients for each mode (not shown) to reconstruct the com-
mon historical biases and estimate the possible bias in the 
projected changes induced by the background bias, which is 
also called the common change bias. Based on Figs. 6, 7b, e, 
the eight leading EOFs can capture well the spatial pattern 
of common historical biases by GPCP (Fig. 7e) in the region 
south of 35°N, but fail to achieve a good simulation in north-
ern China, Korean Peninsula and Japan (Fig. 7e). We also 
show the reconstructions of the common historical biases 
by the first six and first ten EOF modes, along with the cor-
related residuals (Fig. 7). There are no differences between 
the reconstructions of the first eight and ten modes, implying 

(a) (b) (c) (d)

(h)(g)(f)(e)

Fig. 6  Eight leading modes of the intermodel EOF for the individual historical bias of precipitation. The percentage of the variance explained by 
each mode is shown at the top-right corner of each panel
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that the eight-mode truncation here is reasonable. The recon-
struction based on the CMAP shown in the Supplementary 
Material (Fig. S2) is similar to the reconstruction by GPCP.

The next step is to build historical–future relationships to 
estimate the common change biases. The individual change 
biases of Δ� from the 25 CMIP5 models are regressed onto 
the PCs related with the EOF modes grid-by-grid, presenting 
the spatial structure of the regression coefficients in Fig. 8. 
The coefficients are scaled by the standard deviation of the 
corresponding PCs, and the explained variances of each 
regression are calculated to measure the contribution. All 
eight PCs explain about 46.7% of the total intermodel variance 
of the change bias. By combining the regression coefficients 
of the corresponding PCs with the expansion coefficients 
of the corresponding EOFs, we can obtain an estimation of 
the common change bias (Fig. 9a). Different observational 
data produce different expansion coefficients to influence the 
result of the estimation of the common change bias, which 
can also impact the correction. Comparing the correction 
results between the two sets of observations (Fig. 9b and 

Supplementary Material Fig. S3 for CMAP), the difference 
mainly locates in southern China. The intermodel uncertainty 
of [Δ�]DY decreases by 15–45% relative to the uncertainty 
of Δ� (contours in Fig. 9c). Using different observational 
data does not influence the decrease of the uncertainty in 
[Δ�]DY , because the reduced uncertainty depends on the his-
torical–future relationships. The results based on CMAP are 
shown in the Supplementary Material Fig. S3.

The perfect model approach is performed to validate the 
ensemble pattern regression method. Details of the perfect 
model approach are mentioned in Sect. 3.3. Figure 10 shows 
the ratio of RMSE by the dynamic correction to the RMSE 
before dynamic correction in the perfect model approach. 
A ratio under 100% indicates the improvement by ensem-
ble pattern regression method. The reduction of the RMSE 
almost covers all the EASM region except the Yellow 
Sea. This result suggests that the ensemble pattern regres-
sion method used in the dynamic correction can improve 
the robustness of the 500-hPa pressure velocity change in 
simulation.

(a)

(d) (e) (f)

(b) (c)

Fig. 7  Reconstruction of the common historical bias of precipitation by using the a six, b eight and c ten leading modes of the intermodel EOF 
analysis, and d–f the residual related to the reconstruction, with the observed data from GPCP
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4.3  Integrated projection

Finally, we put [Δ�]DY back into Eq. (1) and show the MMM 
and SNR of [ΔP]DY in Fig. 11 and in the Supplementary 
Material Fig. S4 for CMAP. The RMS of the SNR of [ΔP]DY 
increasing by around 64% indicates that the ensemble 

pattern regression method can improve the robustness of the 
projected rainfall change. We further present the integrated 
correction of rainfall change ( [ΔP]TH+DY ; Fig. 12 and Sup-
plementary Material Fig. S5 for CMAP). There is a 160% 
increase in the RMS of the SNR for ΔP , which indicates 
that this integrated correction method can provide a more 

(a) (b) (c) (d)

(h)(g)(f)(e)

Fig. 8  Regression pattern of Δ� onto the PCs associated with the 
intermodal EOF modes shown in Fig.  6. Each regression pattern is 
scaled by the standard deviation of the corresponding PC. The per-

centage of the variance explained by each PC is shown at the top-
right corner of each panel. Stippling indicates where the regression 
passes the t test at the 95% significance level

(a) (b) (c)

Fig. 9  a Estimated common change bias of Δ� . b Corrected MMM of Δ� . c Intermodel standard deviation (shaded) of [Δ�]DY and the percent-
age change (contours; contour interval is 15% and negative contours are dashed) relative to the Δ� , with the observed data from GPCP
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robust projection of the EASM rainfall change. In addition, 
we calculated the RMS of the thermodynamic and dynamic 
components to compare their contributions to the rainfall 
changes. Before correction, the RMSs of the thermody-
namic and dynamic components in EASM region are 0.91 
and 0.4 mm day−1 with their ratio of 2.3, and after correction 
the RMSs of the thermodynamic and dynamic components 
are 1.53 and 0.9 mm day−1 with a decreased ratio of 1.7. 
The thermodynamic component still dominates the rainfall 
changes in EASM region.

The integrated projection of the EASM ΔP shows a 
pronounced enhancement in southern China, the north-
west Pacific and a belt extending from northern China, to 
the Korean Peninsula and northeastern China, and a weak 
enhancement in the other EASM regions. Especially note-
worthy is that the changes over the Yangtze River Valley 
corrected with GPCP are distinct from those corrected with 
CMAP, with the former remaining almost constant but the 
latter yielding a weak increase. This result suggests that the 
choice of “observation” could be another source of uncer-
tainty in these corrected projections.

4.4  Projections under global warming of 1.5 °C 
and 2 °C

Figure 13 depicts the MMM of [ΔP]TH+DY for global warm-
ing of 1.5 °C and 2 °C, which are derived by linearly scal-
ing [ΔP]TH+DY with respective warming rates. Under global 

Fig. 10  Ratio of root mean square error (RMSE) by the dynamic cor-
rection to the RMSE before dynamic correction in the perfect model 
approach. The RMSE is integrated for all 25 models

(a) (b)

Fig. 11  a MMM and b SNR of the summer-mean [ΔP]DY , the total rainfall changes with only dynamic correction by GPCP rainfall datasets. 
RMS of the SNR of [ΔP]DY is shown at the top-right corner of (b)
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warming of 1.5 °C (Fig. 13a, c), EASM rainfall increases 
by around 5–15% in the northwest Pacific and the belt from 
northern China to northeastern China, and by less than 5% 
in the other regions, relative to present-day precipitation. 
And under global warming of 2 °C global (Fig. 13b, d), the 
increase is around 10–25% in the northwest Pacific and the 
belt from northern China to northeastern China, and 5–10% 
in the other EASM regions. We also find that the changes 
in the Yangtze River Valley are distinct between the projec-
tions using the GPCP and CMAP. The Yangtze River Valley 
rainfall is projected to increase by around 5% and 5–10% 
under global warming of 1.5 °C and 2 °C, respectively, when 
the correction is based on CMAP; whereas, when based on 
GPCP, rainfall in this region remains constant under 1.5 °C 
warming and increases only by around 5% under a warming 
of 2 °C.

5  Conclusions and discussion

The low reliability of climate model projections of EASM 
rainfall changes is an important issue for regional climate 
change under global warming. Large intermodel uncer-
tainty exists in the projection of EASM rainfall changes 
among the CMIP5 models. As a conventional method to 
provide an average result from all climate models, the MMM 
seems unconvincing when the climate change signals are 
smaller than the intermodel spread. In the present study, we 

introduce a bias-corrected method to correct the MMM pro-
jection for the EASM rainfall changes based on 25 CMIP5 
models. The integrated projection includes two steps: (1) 
correction by Clausius–Clapeyron scaling for the thermo-
dynamic component; and (2) a spatial emergent constraint 
correction for the dynamic component.

Firstly, the Clausius–Clapeyron scaling correction 
improves the robustness of the EASM ΔP projections, with 
the RMS of the SNR increasing to 1.39 from the original 
0.73. Further, we use a spatial emergent constraint with the 
ensemble pattern regression method in Huang and Ying 
(2015) with two sets of observational precipitation data to 
correct the Δ� in the dynamic component. In the ensem-
ble pattern regression correction, the possible bias in the 
projected Δ� induced by the background bias is estimated 
based on the intermodal spread of the Δ� and the historical 
precipitation, and then used to correct the MMM of the Δ� . 
To validate the method used in the dynamic correction, we 
apply the perfect model approach. The results suggest that 
the dynamic correction can provide a more robust projec-
tion of the future pressure velocity change. Finally, all the 
corrections integrated together increase the regional RMS 
of the SNR of the EASM ΔP to around 1.9 from the 0.73 
of the original ΔP , which is an increase of about 160%. 
This improvement suggest that this bias-corrected method 
can enhance the robustness of projected EASM rainfall 
changes under global warming. The corrected EASM rain-
fall changes show a pronounced enhancement in southern 

(a) (b)

Fig. 12  a MMM and b SNR of the summer-mean [ΔP]TH+DY , with both the thermodynamic correction and the dynamic correction. The color 
bars in this figure are twice those in Fig. 11
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China, the northwest Pacific and a belt from northern China 
to the Korean Peninsula and northeastern China, and a weak 
enhancement in the other EASM regions.

To show a bias-corrected projection under global warm-
ing of 1.5 °C and 2 °C, we linearly scaled the corrected 
EASM ΔP to global warming of 1.5 °C and 2 °C, i.e., 

the goal of the Paris Agreement. Under 1.5 °C warming, 
the EASM ΔP might increase by 5–15% in the northwest 
Pacific and the belt from northern China to northeastern 
China, and by less than 5% in the other regions, relative 
to the present-day precipitation. And under 2 °C warm-
ing, the EASM ΔP increases by around 10–25% in the 

Fig. 13  MMM of [ΔP]TH+DY under global warming of a, c 1.5 °C and b, d 2 °C, based on GPCP and CMAP data. Contours are the percentage 
change for [ΔP]TH+DY relative to the historical (1981–2000) climatology of rainfall
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northwest Pacific and the belt from northern China to 
northeastern China, and by 5–10% in the other EASM 
regions. We also find that the changes in the Yangtze 
River Valley are distinct between projections using differ-
ent observational data.

Based on a simplified moisture budget decomposition 
[Eq. (1)] to study the EASM rainfall change, we neglect the 
residuals in Eq. (1). The residuals can be calculated as the 
difference between Fig. 1a, c, and the effects of the correc-
tion can be calculated as the difference between Figs. 1c, 
12a. We compare the residuals to the correction change in 
Supplementary Material Fig. S6. The residuals are much 
weaker than the correction change, suggesting that the 
residuals provide little influence on the correction results 
in this study.

In addition to the selection of different observation data-
set, the selection of historical variable is also crucial. We 
empirically selected precipitation as historical variable used 
in the ensemble pattern regression method to correct the 
dynamic component. However, some other factors, such as 
the western North Pacific subtropical high and the pattern 
of sea surface warming, may also influence the EASM cir-
culation and rainfall changes (Chen and Zhou 2015; He and 
Zhou 2015). In a recent study, Li et al. (2017) found that 
models simulating excessive historical rainfall over the tropi-
cal western Pacific project larger increase in Indian summer 
monsoon rainfall under global warming. Excessive rainfall 
leads to strong negative cloud–radiation feedback and sup-
presses sea surface warming, changing the atmospheric 
circulation (Gill 1980). Other studies have also revealed 
that certain climatological biases in models can impact pro-
jections of future climate changes in the tropics (Zhou and 
Xie 2015; Ying and Huang 2016; Ham et al. 2018). In the 
subtropics, both the tropical and mid-latitude climate sys-
tems can affect the EASM, which is a more complicated 
picture than in the tropics. The potential factors and under-
lying mechanism associated with intermodel uncertainty in 
EASM rainfall changes and circulation changes need further 
study in the future.

Acknowledgements This work is supported by the National Natu-
ral Science Foundation of China (41575088, 41722504, 41425019, 
41721004 and 41661144016), the Strategic Priority Research Program 
of Chinese Academy of Sciences (XDA20060501), the Public Science 
and Technology Research Funds Projects of Ocean (201505013), and 
the Youth Innovation Promotion Association of CAS and the Funda-
mental Research Funds for the Central Universities. We acknowledge 
the World Climate Research Programme’s Working Group on Coupled 
Modeling, which is responsible for CMIP5, and the climate modeling 
groups (listed in Table 1) for producing and making available their 
model output. We also thank two anonymous reviewers for their con-
structive suggestions.

Appendix: Spatial emergent constraint 
and Ensemble pattern regression method

The spatial emergent constraint with the ensemble pattern 
regression method used in this study was first developed in 
Huang and Ying (2015), extending the original emergent 
constraint for regional-mean changes, to constrain the future 
changes with apparent spatial pattern. The main steps are 
introduced here.

We indicate the historical climatology of model i by 
Hi and the future climatology by Fi . The future change 
Ci is defined as Ci = Fi − Hi . We suppose that there is a 
perfect projection of future change Creal , which is the same 
in all models, and the difference between the Creal and the 
MMM change C̄ = N−1

∑N

i=1
Ci is the common change 

bias C̄� = C̄ − Creal . For the individual change bias C′′
i

 , 
this is defined as C��

i
= Ci − C̄ and the total change bias 

of a model i is C�
i
= C̄� + C��

i
 . An identical decomposition 

method can be applied to the Hi . The historical clima-
tology Hi consists of the observed climatology Hobs , the 
common historical bias H̄� = N−1

∑N

i=1
Hi − Hobs and the 

individual historical bias H��
i
= Hi − H̄.

Next, we need to build up the spatially correlated mode 
between the historical bias and the change bias. EOF 
analysis is a common method to decompose a signal into 
a time series and spatial pattern. However, here we apply 
an intermodel EOF analysis to the H′′

i
 of all the model 

and get the spatially orthogonal modes EOFj , j = 1,… ,M 
and corresponding principal coefficients PCij . For a spe-
cific H′′

i
 , this can be represented as H��

i
=
∑M

j=1
EOFjPCij . 

The truncation of M EOFs depends on the representation 
of the EOF modes for the historical bias H′′

i
 and H̄′ , and 

influences the results of the correction. Multivariant linear 
regression analysis is performed on PCs and individual 
change bias C′′ . The estimation of C′′ can be calculated by 
the regression pattern b̂ and PCs:

Because the PCs are linearly independent, the regres-
sion pattern b̂ equals the simple linear regression result of 
C′′ onto PCs mode by mode. This simplifies the procedure 
of regression.

The estimation of the common change bias C̄′ is based 
on a hypothesis that the relationship between C̄′ and the 
common historical bias H̄′ is the same as the relationship 
between the modes of EOFj and b̂j . First, we project the 
H̄′ onto EOFj and represent the H̄′ by the expansion coef-
ficient ej:

(2)Ĉ��
i
=

M
∑

j=1

b̂jPCij.
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We replace the PCs in Eq. (2) by the expansion coefficient 
ej and estimate C̄′:

Finally, we can correct the MMM change C̄  as 
C̄C = C̄ − �̄C� . The individual change in model i Ci can also 
be corrected as the correction for common bias in MMM. 
We then just need to substitute the common historical bias 
H̄′ in Eq. (3) with the total historical bias H�

i
= Hi − Hobs:

The expansion coefficient eij for H′
i
 can replace the ej in 

Eq. (4):

The individual change in model i is corrected as 
CCi = Ci − Ĉ�

i
.
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