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H I G H L I G H T S  

� We integrate visibility data and GEOS-Chem simulations to estimate PM2.5 concentrations in 2014 over North China. 
� Visibility converted PM2.5 are spatiotemporally consistent with PM2.5 measurements. 
� Our method provides a novel, plausible way to retrieve long-term variation of PM2.5.  
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A B S T R A C T   

Despite much effort made in studying human health associated with fine particulate matter (PM2.5), our 
knowledge about PM2.5 and human health from a long-term perspective is still limited by inadequately long data. 
Here, we presented a novel method to retrieve surface PM2.5 mass concentrations using surface visibility mea-
surements and GEOS-Chem model simulations. First, we used visibility measurements and the ratio of PM2.5 and 
aerosol extinction coefficient (AEC) in GEOS-Chem to calculate visibility-inferred PM2.5 at individual stations 
(SC-PM2.5). Then we merged SC-PM2.5 with the spatial pattern of GEOS-Chem modeled PM2.5 to obtain a gridded 
PM2.5 dataset (GC-PM2.5). We validated the GC-PM2.5 data over the North China Plain on a 0.3125� longitude x 
0.25� latitude grid in January, April, July and October 2014, using ground-based PM2.5 measurements. The 
spatial patterns of temporally averaged PM2.5 mass concentrations are consistent between GC-PM2.5 and 
measured data with a correlation coefficient of 0.79 and a linear regression slope of 0.8. The spatial average GC- 
PM2.5 data reproduce the day-to-day variation of observed PM2.5 concentrations with a correlation coefficient of 
0.96 and a slope of 1.0. The mean bias is less than 12 μg/m3 (<14%). Future research will validate the proposed 
method using multi-year data, for purpose of studying long-term PM2.5 variations and their health impacts since 
1980.   

1. Introduction 

Particulate matter with diameter less than 2.5 μm (PM2.5) affects the 

climate, visibility and human health (Lelieveld et al., 2015; Allen et al., 
2014; Wang et al., 2015). According to a Global Burden of Disease study 
(Lim et al., 2012), global PM2.5 pollution accounted for 3.1 million 
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deaths in 2010, predominantly in China and India. A recent study 
revealed that transboundary PM2.5 pollution associated with interna-
tional trade and atmospheric transport together caused 0.76 million 
premature deaths worldwide in 2007 (Zhang et al., 2017). Studies on 
fine particle matter health impacts and climate influences require his-
torical PM2.5 data. Therefore, to fully assess the health impacts of PM2.5, 
it is crucial to get access to long-term PM2.5 data across multiple de-
cades. However, to our knowledge, long-term PM2.5 data are lacking 
especially in developing countries. 

Surface PM2.5 mass concentrations in China are measured typically 
by either Tapered Element Oscillating Microbalances (TEOM) or BETA- 
ray instruments. In China, continuous PM2.5 measurements are sparse 
before 2013. The Chinese official air quality monitoring network mea-
sures PM2.5 and other pollutants since 2013, mostly in the urban areas. 
These data form the basis for many recent studies on the spatial and 
temporal characteristics of urban air pollution and their causes over 
China (Liu et al., 2018; Wang et al., 2014; Ge et al., 2018). However, 
these measurement data cannot be used to analyze long-term trends and 
variability of PM2.5 and resulting health effects. Therefore, alternative 
approaches to retrieving surface PM2.5 concentrations were developed 
in the past decades. 

Aerosol Optical Depth (AOD) data based on modern satellite remote 
sensing have been used widely to retrieve surface PM2.5 concentrations 
due to their good spatial coverage. AOD data are available from multiple 
satellite instruments, such as the Moderate Resolution Imaging Spec-
troradiometer (MODIS, since 2000), the Multiangle Imaging SpectroR-
adiometer (MISR, since 2000), and the Sea-viewing Wide Field-of-view 
Sensor (SeaWiFS, since 1998) (Liu et al., 2017a). These AOD data have 
been combined with chemical transport model simulations or statistical 
approaches to derive surface PM2.5 (Boys et al., 2014; Geng et al., 2015; 
van Donkelaar et al., 2010, 2015). 

van Donkelaar et al. (2010) estimated the global distribution of 
PM2.5 using satellite MODIS and MISR AOD products and GEOS-Chem 
simulations from 2001 to 2006. Their estimated PM2.5 values show 
good agreement with observed PM2.5 over North America. Using the 
same method and MODIS, MISR and SeaWiFS AOD data, Boys et al. 
(2014) produced a 15-year time series (1998–2012) of surface PM2.5 
concentrations worldwide, which agreed well with the situ measure-
ments in Eastern U.S. van Donkelaar et al. (2015) used the Geographi-
cally Weighted Regression (GWR) statistical model to improve the PM2.5 
inference from AOD and GEOS-Chem simulations. Their analysis 
showed that local variability in surface elevation and urban emissions 
are important sources of uncertainty in retrieving PM2.5 concentrations. 
Using satellite AOD data and high-resolution GEOS-Chem simulations, 
Geng et al. (2015) estimated surface PM2.5 concentrations over China 
during 2006–2012, after using CALIOP aerosol vertical profile data to 
correct for model biases. They found very good spatial agreement be-
tween satellite-derived and measured PM2.5 concentrations. 

However, there are a number of limitations embedded in such 
satellite-based PM2.5 inference approaches. Model simulations are sub-
ject to errors in the model representations of atmospheric processes, 
especially the vertical mixing and transport that directly affect the 
simulated aerosol vertical profiles (Lin and McElroy, 2010; Liu et al., 
2018). Satellite-based AOD datasets are subject to a large number of 
missing values due to screening for cloudy and strongly surface 
reflecting scenes. The AOD datasets may have a low sampling bias, 
because high aerosol scenes may be mis-treated as cloudy ones and 
screened out (Lin and Li, 2016). In addition, there are no reliable sat-
ellite AOD data over land before 1998. 

Satellite AOD data can also be combined with statistical models or 
machine learning approaches to infer surface PM2.5 concentrations. 
Taking meteorology and land use information into model, Ma et al. 
(2014) estimated surface PM2.5 concentrations using AOD from MODIS 
and MISR as a primary predictor. Zheng et al. (2016) constructed linear 
mixed-effects models to convert MODIS AOD data and other predictors 
to ground-level PM2.5 concentrations over three major industrialized 

regions in China. They corrected the predicted PM2.5 concentrations by 
observed PM2.5. Li et al. (2017) applied a Geo-Intelligent Deep Learning 
approach to estimate PM2.5 over China, and they showed that in 2015 
over 80% of Chinese lived in areas with annual mean PM2.5 concen-
trations above the WHO IT-1 standard levels (35 μg/m3). Nonetheless, 
these statistical or machine learning approaches may have difficulties in 
establishing/explaining the causality between PM2.5 and predictors, 
which poses the question of how the established relationships can be 
extrapolated to other times and/or regions. The coefficient of determi-
nation (R2) of such methods declines substantially from 0.41 to 0.98 
when the training dataset is used to 0.31–0.55 when the predictive 
dataset is used (Wei et al., 2019). In addition, satellite AOD data have 
their own limitations, as mentioned above. 

Visibility measurements available for multiple decades from ground 
meteorological stations have also been used, together with statistical 
models, for PM2.5 inference. Visibility represents horizontal light 
extinction, which is highly related with the amount of PM2.5, its chem-
ical compositions, size distributions, optical properties, and hygro-
scopicity (Charlson, 1969; Sinclair et al., 1974; Song et al., 2003). 
Visibility and PM2.5 concentrations are negatively correlated with a 
power law relationship (Zhao et al., 2011; Zhang et al., 2019). Based on 
visibility data from 674 meteorological monitoring sites and a statistical 
model, Liu et al., 2017a inferred the long-term (1957–1964 and 
1973–2014) changes of PM2.5 pollution in China. They found PM2.5 
concentrations reached 60–80 μg/m3 over the northern part of the North 
China Plain during the 1950s–1960s, increasing to levels generally 
higher than 90 μg/m3 since then. Shen et al. (2016) retrieved historical 
(1979–2003) PM2.5 mass concentrations in Xi’an using visibility mea-
surements and an exponential regression model, and they found 
decreasing trends by � 4.6 μg/m3/year and � 12.1 μg/m3/year during 
1979–1996 and 2007–2011, respectively, in contrast to a growth during 
1997–2007 by 8.8 μg/m3/year. However, statistical models are subject 
to abovementioned limitations. 

This study presents a new method to retrieve surface PM2.5 mass 
concentrations using GEOS-Chem simulations and surface visibility 
measurements. The method is inspired by our present study (Lin and Li, 
2016; Lin et al., 2014) that used GEOS-Chem and visibility data to infer 
AOD over East China, which showed high consistency with AErosol 
RObotic NETwork (AERONET) and MODIS AOD data in terms of a low 
bias and high temporal and spatial correlations. Here we proposed a 
similar method to retrieve PM2.5 concentrations over the NCP in 
January, April, July and October 2014 (i.e., covering four seasons). In 
particular, we used GEOS-Chem to help convert visibility to PM2.5 
concentration at each site and then to a gridded space, in order to 
facilitate further applications such as health impact analysis. We further 
validated the retrieved PM2.5 data against ground PM2.5 measurements. 

2. Data and methods 

2.1. Surface PM2.5 mass concentration measurements 

Hourly surface PM2.5 concentration measurements were obtained 
from the China National Environmental Monitoring Center (CNEMC). 
The filled circles in Fig. 1 show the 396 observation sites over the NCP 
used here. The sites are concentrated in urban areas and lack coverage in 
rural and remote areas. Thus the observed data may not fully represent 
the regional air quality. 

At these 396 sites, PM2.5 concentrations are measured by either 
TEOM or Beta-attenuation instruments. Quality control is done through 
a fully automatic outlier detection method for four types of outliers: 
temporal and spatial inconsistency, low variance, periodic calibration 
exceptions, and PM10 concentrations being lower than PM2.5 concen-
trations (Wu et al., 2018). Additionally, we required that there are at 
least 20 hourly data for each day, 20 days per month, 2 months in 
January, April, July and October 2014. We chose the four months to 
represent individual seasons, instead of choosing all months, to reduce 
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the computational costs of respective GEOS-Chem simulations. When 
comparing with PM2.5 measurements, we excluded data at times when 
either visibility-converted PM2.5 or measured PM2.5 data were missing. 

2.2. Visibility and other meteorological data 

Visibility, temperature, wind speed and Relative Humidity (RH) 
measurements at 610 sites in January, April, July and October 2014 
were obtained from Chinese Meteorological Administration (CMA). The 
gray crosses in Fig. 1 show the meteorological sites. 

For our study period, visibility is measured automatically by For-
ward Scattering Visibility Meter (FSVM) which has a scattering angle of 
30�–50�. The instrument ignores the absorption of light by the atmo-
sphere, thus the derived scatter coefficient is scaled up by an embedded 
algorithm to account for absorption and better represent the total 
extinction coefficient before the value is converted to visibility (Tan 
et al., 2010). Chinese meteorological stations mostly use the HY-V35 
automatic visibility instrument manufactured by Huayun Shengda 
Company, with core components of the instrument purchased from 
Vaisala, Finland. HY-V35 passed the assessment of various indicators of 
CMA on May 2011. The instrument measures forward scattering in the 
angle of 45�. In the instrument manual, it points out that K ¼ 3.0 in the 
Koschmeider equation that connects light extinction and visibility. 

This automatic measurement is different from the manual measure-
ment before 2013, i.e., by human eyes. Manual observations tend to give 
larger visibility values than automatic measurements, whereas their 
linear trends are highly consistent (Fan et al., 2017; Liu et al., 2017b). 
Therefore, precaution should be taken when combining manual and 
automatic visibility measurements for long-term PM2.5 studies, which is 
the focus of our future studies. For example, according to the Kosch-
meider equation, AEC ¼ K/V, K ¼ -lnε, and ε denotes visual contrast. 
According to the regulations of the International Meteorological Orga-
nization, ε ¼ 0.05 (K ¼ 3.0) for instrument measurement. When manual 
measurements of visibility are used for historical analyses in future 
research, we will change the value of K to 3.9 (Lin et al., 2104; Lin and 
Li, 2016). In addition, we will consider discontinuity issues about 

long-term visibility data such as site movement and reporting standard. 
Observations taken at night and under heavy cloudy conditions can also 
be uncertain. Therefore, a careful filtering and quality control process 
will be performed before these data are used to study long-term trend. 
Nevertheless, this study only focuses on the automatic visibility 
measurements. 

The visibility observations are hourly data beginning at 00:00 UTC 
(08:00 Beijing Standard Time). Quality control for visibility data is 
shown in Section. 2.4. Other meteorological data are also available 
hourly. Note that compared to satellite AOD data, visibility data provide 
a much longer time series of information for PM2.5 inference since the 
1950s to help evaluate the long-term changes in PM2.5 and related 
health impacts. Compared to PM2.5 measurement sites, meteorological 
stations are spatially more homogeneous and are available at urban, 
rural and remote areas, providing better spatial representativeness. 

2.3. GEOS-Chem model 

We used the nested GEOS-Chem model for China (version 11–01, 
http://wiki.seas.harvard.edu/geos-chem/index.php/Main_Page) to 
simulate the ratio between surface PM2.5 concentration and Aerosol 
Extinction Coefficient (AEC) for converting the visibility-derived near- 
surface AEC to PM2.5. Driven by the GEOS-FP assimilation meteorology 
from the Goddard Earth Observing System (GEOS) of the NASA Global 
Modeling and Assimilation Office, the nested model has a horizontal 
resolution of 0.3125� longitude x 0.25� latitude with 47 vertical layers, 
and the lowest 10 layers are of ~130 m thickness each. The lateral 
boundary conditions of nested model are taken every 3 h from a global 
GEOS-Chem simulation at 2.5� longitude x 2� latitude. Spin-up time for 
nested model and global model are 15 days and one month, respectively. 
The scheme of planetary boundary layer employs a non-local scheme 
implemented by Lin and McElroy (2010). Model convection is simulated 
with the relaxed Arakawa–Schubert scheme (Rienecker et al., 2008). 

Both the global and nested GEOS-Chem models are run with the 
NOx-Ox-hydrocarbon-aerosol-bromine tropospheric chemistry mecha-
nism with online aerosols. Aerosols simulated include secondary inor-
ganic aerosols (SIOA, including sulfate, nitrate and ammonium), 
secondary organic aerosols (SOA), primary organic aerosols (POA), 
black carbon (BC), dust and sea salt. The ammonium-sulfate-nitrate- 
water system is calculated by ISORROPIA II thermodynamic equilib-
rium model (Fountoukis and Nenes, 2007), with updates on heteroge-
neous sulfate and nitrate processes (Zhang et al., 2015). Natural dust 
particles are emitted with the DEAD scheme (Fairlie et al., 2010; Zhang 
et al., 2013). The calculation of SOA species are parameterized by Pye 
and Seinfeld (2010). The parameterization of sea salt is from Jaegle et al. 
(2011). Uptake of the hydroperoxyl radical on aerosols and represen-
tation of anthropogenic aromatics follow Lin et al. (2012) and Ni et al. 
(2018). 

Monthly gridded anthropogenic emissions in China are taken from 
the Multi-resolution Emission Inventory for China (MEIC, www.meic 
model.org; Geng et al., 2017) for 2014 for nitrogen oxides (NOx), car-
bon monoxide (CO), sulfur dioxide (SO2), BC and POA. Following Zhang 
et al. (2015), emissions of anthropogenic fine dust are also included, by 
taking primary PM2.5 emissions from MEIC. For non-methane volatile 
organic compounds (NMVOC) emissions, the spatial pattern, seasonal 
pattern and ratios of individual compounds to the total NMVOC are 
fixed, with the total amount of NMVOC scaled to each specific study year 
according to the national total amount of NMVOC in MEIC in 2014. 
Biomass burning emissions are taken from the monthly GFED4 datasets 
(Giglio et al., 2013). Biogenic emissions of NMVOC follow MEGANv2.1 
(Guenther et al., 2012). Soil emissions of NOx employ the parameteri-
zation from Hudman et al. (2012). 

Future research aiming to combine model simulations with visibility 
data for historical PM2.5 studies could use the MERRA2 assimilated 
meteorological data available since 1980 and the monthly emission data 
from the Community Emissions Data System available since 1750. A 

Fig. 1. Ground PM2.5 observation sites (filled circles) and meteorological sta-
tions (gray crosses) over the NCP. 
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historical analysis, however, is out of the scope of this study. 

2.4. Retrieval method 

As shown in Fig. 2, our retrieval method contains multiple steps. 
First, we conducted quality control for visibility data, following previous 
studies (Husar et al., 2000; Lin et al., 2014; Li et al., 2016). Fine particle 
matter and relative humidity is the two main factors affecting visibility. 
Observational results (Chen et al., 2012) show that when RH < 90%, low 
visibility is largely influenced by aerosol volume concentration; while 
for RH > 90%, indicative of the formation of fogs and precipitation, the 
increase of RH is dominantly responsible for the decrease of visibility. 
Therefore, to reduce the effect of non-aerosol factors on visibility, we 
excluded visibility records when RH exceeded 90%. This choice is 
consistent with previous studies (Craig and Faulkenberry, 1979; Zhao 
et al., 2011). We further excluded data that may be affected by blown 
snow from the ground, i.e., when air temperature is below � 29 �C and 
wind speed above 16 km/h. If the maximum value of visibility data at a 
site in the clean area (median visibility > 11 km) within a month is 
smaller than 12 km, all data at that site in that month were excluded; this 
situation indicates erroneous data record. To remove potentially erro-
neous data spikes, if the daily mean visibility on a day is lower than one 
third of the value both on the day before and on the day after, data on 
that day were excluded (Husar et al., 2000). 

Second, we converted the quality controlled visibility data to hourly 
near-surface AEC. According to the Koschmieder Equation, near-surface 
AEC at 550 nm is inversely proportional to visibility if the effect of air 
molecules is neglected: AEC ¼ K/V. This formula is often used for the 
conversion between visibility and aerosol extinction coefficient (Husar 
et al., 2000; Lin et al., 2014; Xu et al., 2005). Here V represents the 
observed visibility, and K ¼ -lnε is the Koschmieder constant. For FSVM, 
the contrast threshold ε is chosen as 5%, with K equal to 3.0 (Li and Sun, 

2009; Zeng and Wang, 1999). In order to reduce the optical influence of 
air molecules and correct for other potential errors at clean (high visi-
bility) situations, we used a modified formula to relate visibility and 
AEC: AEC ¼ K/V–K/V0, where V0 ¼ 70 km (Lin et al., 2014). 

Third, we adopted the hourly ratio of PM2.5 to AEC simulated by 
GEOS-Chem to scale the visibility converted AEC to obtain the visibility- 
inferred PM2.5 concentrations at individual sites (hereafter referred to as 
Station Concerted-PM2.5): 

ðPM2:5ÞSC ¼AEC �
ðPM2:5Þmodel

AECmodel 

For a particular site, the modeled ratio of PM2.5 to AEC was taken as 
the value interpolated from nearby model grid cells through bilinear 
interpolation, with the time of model results matching that of the hourly 
visibility data. At each model grid cell, the model PM2.5 concentration 
was summed over the concentrations of fine dust (DST1 þ 0.38 � DST2 
in the model), fine sea salt particles (SALA in the model), BC, POA 
(assumed to be 1.8 times the mass of primary organic carbon), and SIOA. 
The model AEC was calculated based on the optical effects of these PM2.5 
components and additional coarse mode dusts (DST3 and DST4) and 
coarse sea salt particles (SALC), with their hygroscopicity accounted for 
(Lin et al., 2016) using the observed RH at respective meteorological 
station. Inclusion of coarse particles in calculating model AEC ensures 
the consistency with visibility-inferred AEC that is affected by both fine 
and coarse particles. Considering that the measured PM2.5 and visibility 
data are near-surface, we choose the values of model PM2.5 and AEC in 
the bottom model layer (i.e., from the ground to approximately 130 m). 
Then, we obtained a Station-Converted hourly PM2.5 dataset in January, 
April, July and October 2014 over the NCP. The daily mean PM2.5 data 
were averaged from the hourly data. 

Fourth, we converted the station-specific daily mean PM2.5 data to 
gridded data at a horizontal resolution of 0.3125� longitude x 0.25�

Fig. 2. A flowchart for retrieval of gridded PM2.5 mass concentration data using visibility measurements and GEOS-Chem simulations. Data sources are shown in 
parentheses. 
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latitude, according to the resolution of GEOS-Chem. The resulting 
dataset is referred to as Grid-Converted PM2.5. There are two purposes 
for this station-to-grid conversion. The station-based data lack contin-
uous spatial coverage needed for health impacts studies. Also, the 
station-based visibility measurements are subject to instrument errors 
and representation errors, i.e., the measured values may be affected by 
local pollution sources and other factors and thus not fully representa-
tive of the actual pollution level in the surrounding area. In fact, visi-
bility data may contain certain “noise” spatially, as shown in Lin et al. 
(2014) and in Sect. 3.3. 

We tested 8 candidate methods for this station-to-grid conversion, 
and finally selected a method, Case 7, that has the best performance; see 
below for evaluation statistics and Sect. 3.2 for the selection process. All 
cases but Case 2 and Case 3 involved matching a grid cell center to 
surrounding visibility stations within a certain radius. We tested radii of 
0.1�, 0.2�, 0.3�, 0.4�, 0.5�, 0.6�, 0.7�, 0.8�, 0.9�, 1.0�, 1.5� and 2�. The 
larger the radius is, the higher extent the Station-Converted PM2.5 data 
are spatially smoothed. 

Case1:cF
d;i ¼ medianðcSC

d;i Þ

Case2:cF
d;i ¼ cCres

d;i

Case3:cF
d;i ¼

Xn

i¼1
ð

r� 1
i

Pn

i¼1
r� 1

i

Þ⋅cSC
d;i

Case4:cF
d;i ¼ medianð

cSC
d;i

cM
d;i
Þ⋅cM

d;i

Case5:cF
d;i ¼

medianðcSC
m;iÞ

cM
m;i

⋅cM
d;i

Case6:cF
d;i ¼

cM
m;i

medianðcSC
m;iÞ

⋅medianðcSC
d;i Þ

Case7:cF
d;i ¼

cM
m;i

.
meanðcM

m;iÞ

cSC
m;i

.
meanðcSC

m;iÞ
⋅medianðcSC

d;i Þ

Case8:cF
d;i ¼

cM
m;i

.
meanðcM

m;iÞ

cCres
m;i

.
meanðcCres

m;i Þ
⋅cCres

d;i 

In these eight candidate methods to convert station-specific to 
gridded PM2.5 data, cF

d;i denotes the finally obtained daily mean PM2.5 

concentration on day d at grid cell i. The superscript F denotes final, M 
denotes model, SC denotes Station Converted, and Cres denotes Cress-
man interpolation. The subscript r denotes distance, d denotes day, m 
denotes month, i denotes grid cell i, and i’ denotes the grid cell in which 
the visibility measurement station is located. The function “mean” de-
notes the average over all grid cells, and “median” denotes the median 
value among the selected grid cells. 

Of these 8 methods, Cases 1–3 utilized the Station-Converted PM2.5 
data alone without further using GEOS-Chem simulations. Case 1 
assigned to a grid cell the median value from stations within a certain 
radius of the grid cell center. Cases 2 and 3 used the Cressman and the 
Inverse Distance Weight (IDW) interpolation methods, respectively. 

Cases 4–8 used the spatial variability simulated by GEOS-Chem to 
facilitate the station-to-grid conversion. As shown in Sect. 3.1, the 
GEOS-Chem simulated spatial distribution of PM2.5 outperforms the 
distribution of visibility-converted station-based data. In Case 4, for a 
given grid cell “i” on each day, we found all stations within a certain 
radius of the grid cell center, calculated the ratios of Station-Converted 
PM2.5 to Modeled PM2.5 (at the grid cells in which these visibility sta-
tions are located), and then used the median value of these ratios to scale 
the Modeled PM2.5 at grid cell “i”. Case 5, aiming to eliminate the noise 
in the day-to-day variability, was similar to Case 4 except that the ratios 
were based on monthly (rather than daily) mean PM2.5 data. Here, to 
reduce the monthly average calculation errors caused by missing values, 
we chose the median value of all stations within a certain radius of the 
grid cell center to match the model PM2.5, and then used data on the 
days when Station-Converted PM2.5 and model PM2.5 are both available. 
Case 6 was similar to Case 5, except that the scaling was based on the 
(spatial) median of Station-Converted PM2.5 data. 

Cases 7 and Case 8 were designed based on the fact that Modeled 
PM2.5 data were spatially consistent with PM2.5 measurements and had a 
lower mean bias (see Sect. 3.1). The two cases used the spatial pattern 
(shape) of model PM2.5 data to facilitate the station-to-grid conversion. 
For Case 7, we first calculated the monthly Modeled PM2.5 at each grid 
cell normalized to its spatial average, calculated the respective value for 
Station-Converted PM2.5., and then derived their ratio. The calculation 
of monthly mean values and the sampling of available grid cells were the 
same as in Case 5. We then used this ratio to scale the result derived from 
Case 1 to finally obtain the gridded and spatial shape-adjusted daily 
PM2.5 data. Case 8 was similar to Case 7, except that Station-Converted 
PM2.5 data are replaced by Cressman-interpolated gridded data from 
Case 2. 

Evaluation of the 8 station-to-grid conversion methods was based on 
how each method led to high spatial and temporal (i.e., day-to-day 
across the four months) consistencies with the actual PM2.5 measure-
ments. A few indicators were used to evaluate the consistency, including 
bias, correlation coefficient, slope of a linear regression, root mean 
square error (RMSE). We applied the Reduced Major Axis (RMA) 
regression, which is more appropriate than the Ordinary Least Square 
regression when independent variable x contains errors, to estimate the 
slope and intercept. 

3. Spatio-temporal variability of measured, modeled, Station- 
Converted and Grid-Converted PM2.5 

3.1. Comparison of Station-Converted, modeled and measured PM2.5 

Fig. 3 compares the spatial distributions of (a) observed, (b) Station- 
Converted, (c) Station-Converted and sampled based on available ob-
servations, (d) modeled and (e) Grid-Converted PM2.5 concentrations 
over the NCP averaged over January, April, July and October 2014. 
From the observed data (Fig. 3a), which represent urban air quality, 
high PM2.5 pollution occur over southern Hebei. The highest PM2.5 
concentrations reach 170.4 μg/m3, due to the combined effects of large 
emissions, efficient secondary formation and unfavorable conditions for 
pollution outflow. PM2.5 concentrations are lower over the northern 
parts of Hebei and Shanxi, Shandong Peninsula and Inner Mongolia, due 
to lower emissions and favorable topographical and meteorological 
conditions for pollution removal/transport (Zheng et al., 2018; Zhang 
et al., 2018). The domain average PM2.5 concentration is 83.8 μg/m3. 

Fig. 3b shows the Station-Converted PM2.5 data, which are more 
much regionally representative than the PM2.5 observations (Fig. 3a) 
and still capture the observed spatial pattern (from urban sites). Since 
the Station-Converted PM2.5 data are not spatially collocated with PM2.5 
observations, we choose the median value of the converted PM2.5 data 
from all stations within a 0.2� radius of each PM2.5 observation station 
(Fig. 3c). Such re-sampled data reveal several locations where Station- 
Converted PM2.5 overestimate the observed values significantly. 
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Averaged over the NCP, the Station-Converted concentration is 
109.8 μg/m3, with an overestimate by 26.0 μg/m3. The scatter plots in 
Fig. 4 also show significant positive biases of Station-Converted PM2.5 
data, especially when the pollutant concentrations are high. 

GEOS-Chem captures the observed spatial distribution of PM2.5 

concentrations averaged over the four months in 2014 (Fig. 3d). As for 
model and Grid-Converted PM2.5, we match the observation by choosing 
the grid cell in which the observation station is located. In particular, 
Fig. 4a shows that when sampled coincidently with the observations, the 
modeled PM2.5 results have a small positive bias (by 2.5 μg/m3). The 

Fig. 3. Spatial distributions of (a) observed (ground PM2.5 observation sites), (b) Station-Converted (based on visibility measurement sites), (c) Station-Converted 
and sampled with observation times and locations (ground PM2.5 observation stations), (d) modeled (simulated by GEOS-Chem), and (e) Grid-Converted (visibility- 
converted for grid cells under Case 7, with a radius of 0.3�) PM2.5 concentrations averaged over January, April, July and October 2014. The black lines show 
provincial borders. 

Fig. 4. Scatter plots of (a) modeled, (b) Station-Converted and (c) Grid-Converted (Case 7, with a radius of 0.3�) PM2.5 (y-axis) with respect to PM2.5 observations (x- 
axis). A data point in the figure represents the monthly mean values (red-January, yellow-April, purple-July, green-October) at a station. The dotted line depicts the 
1:1 relationship, and the solid line depicts the RMA regression line. Statistical analysis results are shown in each panel. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the Web version of this article.) 
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model has a high spatial correlation coefficient (0.73) with the observed 
data, much higher than the correlation coefficient for the Station- 
Converted data (0.49) (Fig. 4b). The modeled data also have signifi-
cantly lower RMSE than the Station-Converted data (Fig. 4a and b). 
These results suggest that the model better captures the spatial distri-
bution of PM2.5 observations than the visibility-based data do. 

Fig. 5 further evaluates the day-to-day variations of modeled and 
Station-Converted PM2.5 concentrations against the observations in the 
four months. Modeled and Station-Converted data were sampled based 
on the observations; and results were averaged over the NCP on each 
day. Although both the modeled and Station-Converted PM2.5 can cap-
ture the day-to-day variation of the observed data, the capability of 
Station-Converted data is better, especially with a higher correlation 
coefficient (0.96 versus 0.84). However, the modeled data is better than 
the Station-Converted ones in terms of mean bias and RMSE. Note that 
because of the difference in data averaging, the values for bias here are 
slightly different from those in the discussion of spatial distribution. 

3.2. Evaluation of Grid-Converted PM2.5 data derived from 8 candidate 
station-to-grid mapping methods 

This section evaluates the Grid-Converted PM2.5 data derived from 8 
candidate station-to-grid mapping approaches presented in Sect. 2.4. 
Such mapping is based on the preference for health impact studies to 
having high spatial coverage and, for a few mapping approaches, an 
attempt to take advantage of the GEOS-Chem model capability in 
capturing the spatial pattern of PM2.5 observations. As mentioned in 
Sect. 2.4, the evaluation focuses on whether the Grid-Converted data can 

capture both the spatial and temporal (day-to-day) variations of 
observed PM2.5. 

Fig. 6 shows the evaluation statistics for each case, as a function of 
the distance (radius) from the visibility station to the grid cell center. As 
the mapping radius increases, the spatial feature of Grid-Converted 
PM2.5 is further smoothed and the spatial details are further lost. For 
temporal (day-to-day) correlation evaluation (Fig. 6b), data on each day 
are averaged over all PM2.5 measurement sites. In general, results for 
temporal correlation do not show a strong dependence on the mapping 
radius, mainly because PM2.5 data are spatially averaged. For all cases 
and radii, the temporal correlation coefficients exceed 0.8, reflecting 
that the Station-Converted PM2.5 data have a good performance in terms 
of temporal variation. However, Cases 2,3, 7 and 8 still outperform the 
other cases (R > 0.9 for all radii). Evaluation on temporal bias gives a 
similar result to the evaluation on spatial bias (see below) and is thus not 
shown. 

For evaluation of spatial bias and correlation (Fig. 6a, and c), data at 
each PM2.5 measurement site were averaged over the four months. The 
biases of Cases 1, 4 and 5 are very sensitive to the mapping radius, and 
the lowest biases are obtained for a radius of 0.5�–0.6�. These three cases 
also result in relatively low spatial correlation coefficients (<0.6). Cases 
1 and 5 have similar results. Case 2 (with Cressman interpolation) leads 
to a relative high bias, except when the mapping radius exceeds 0.7�. 
Case 3 is derived from the IDW method, and thus its evaluation results 
do not vary with the mapping radius. Case 3 has a relatively low spatial 
correlation (R ¼ 0.60) and a high bias (13.6 μg/m3). Case 6 leads to the 
smallest mean bias, and its respective correlation coefficient is among 
the highest and does not change significantly with radius. Case 7 has the 
second highest spatial correlation coefficient (after Case 8) and a rela-
tively small bias (within 10 μg/m3 when radius is greater than 0.2�). 
This low bias suggests that using GEOS-Chem simulation results to 
adjust the spatial distribution of visibility inferred PM2.5 helps to reduce 
the bias, a desirable outcome. Case 8 leads to the highest correlation 
coefficient, but it also has the greatest bias (>30 μg/m3 for all mapping 
radius). 

Fig. 6d further shows the RMA regression slope for the spatial vari-
ability of temporally averaged Grid-Converted PM2.5 data. The slope of 
Case 8 is the highest and has small dependence on radius (i.e., between 
1.35 and 1.40). The slopes of Case 1, 4 and 5 decline significantly with 
the increasing radius. Although Case 6 has the smallest mean bias and a 
high correlation coefficient, the regression slope of Case 6 is relatively 
low (<0.75) for all radii. The slope of Case 7 declines slightly with the 
increasing radius, and it remains between 0.85 and 1.05 for all radii. 

Overall, Case 7 with a mapping radius of 0.3� has the most desired 
performance in both the temporal and the spatial domains. In particular, 
it has a relatively small mean bias (7.9 μg/m3, or 9.4%), high correlation 
coefficients (0.80 spatially and 0.96 temporally) and better slope (1.0 
spatially). A radius of 0.3� also helps preserve the high-resolution spatial 
information embedded in the visibility data and GEOS-Chem simula-
tions. In the next section, we analyze the gridded results from this 
method in detail. 

3.3. Spatio-temporal distribution of Grid-Converted PM2.5 based on the 
selected station-to-grid conversion method (case 7) 

Fig. 3e shows the gridded distribution of PM2.5 concentrations 
averaged over the four months in 2014 based on Case 7 with a mapping 
radius of 0.3�. The spatial distribution is consistent with the observed 
one, such as the highest PM2.5 concentrations over southern Hebei and 
the lowest over the northern regions. The gridded dataset corrects the 
underestimate in the model results and reduces the excessively high 
values in the Station-Converted data. 

The scatter plots in Fig. 4c further evaluate the spatial distribution of 
Grid-Converted (Case 7) data against PM2.5 observations. Gridded data 
were sampled from the grid cells covering the PM2.5 measurement sta-
tions and on days with available PM2.5 measurements. The correlation 

Fig. 5. Day-to-day variation of (a) modeled, (b) Station-Converted and (c) Grid- 
Converted (Case 7, with a radius of 0.3�) PM2.5 with respect to PM2.5 obser-
vations in January, April, July and October 2014. For each day, PM2.5 con-
centrations are averaged over all stations in the NCP. Statistical analysis results 
are presented in each panel. Modeled, Station-Converted and Grid-Converted 
data are sampled based on the observations. 
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coefficient (R ¼ 0.80) with the observed PM2.5 are higher than model 
simulations (R ¼ 0.73) and Station-Converted PM2.5 (R ¼ 0.49) alone. 
The mean bias (7.9 μg/m3, or 9.4%), the RMA regression slope (1.0), and 
the small RMSE (17.6 μg/m3) are also desirable, compared to the values 
for GEOS-Chem simulations (2.5 μg/m3, 0.80, and 18.6 μg/m3, respec-
tively) and Station-Converted data (25.7 μg/m3, 1.8, and 51.1 μg/m3, 
respectively). 

Fig. 5c shows the day-to-day variations of observed and Grid- 
Converted PM2.5 concentrations (Case 7) in each month. For each day, 
data were selected from stations with available observations and con-
verted values, and were further averaged over the NCP. Fig. 5c shows 
that Grid-Converted PM2.5 data have a small bias of 9.4 μg/m3 (or 
11.4%); note that this value is slight different from the spatial bias 
(7.9 μg/m3, or 9.4%) because of the difference between temporal and 
spatial sampling. The temporal variation of Grid-Converted PM2.5 over 
the four months is consistent with the observed variation (R ¼ 0.96, 
linear regression slope ¼ 1.0), better than that of GEOS-Chem (R ¼ 0.84, 
slope ¼ 0.70) and Station-Converted (R ¼ 0.96, slope ¼ 1.3) PM2.5. The 
Grid-Converted PM2.5 data also capture the observed PM2.5 peaks, which 
represent the pollution episodes, as well as the low values on clean days. 
They reproduce the seasonal variation of observed PM2.5 mass concen-
trations, i.e., a higher mean value and day-to-day variability in winter 
and lower values in summer. The Grid-Converted PM2.5 correct the 
temporally consistent overestimate in the Station-Converted PM2.5 data 
and the wintertime underestimate and summertime overestimate in 
GEOS-Chem simulations. 

4. Conclusions 

This study offers a novel, plausible method to infer surface PM2.5 
mass concentrations on a 0.3125� longitude x 0.25� latitude grid, by 
combining the spatially dense high-frequency surface visibility 

measurements and GEOS-Chem simulations. Applying the method to the 
NCP in January, April, July and October 2014 shows good performance 
of the inferred data with respect to the official PM2.5 measurements. 

Specifically, after the visibility data are converted to PM2.5 concen-
trations at each station and then each grid cell (based on Case 7 with a 
mapping radius of 0.3�), the derived gridded PM2.5 data are both 
spatially and temporally consistent with the PM2.5 measurements. The 
spatial and temporal mean biases are both within 10 μg/m3. The tem-
poral (day-to-day) correlation coefficient reaches 0.96 with a linear 
regression slope of 1.0. The spatial correlation coefficient reaches 0.80 
with a regression slope of 1.0. The lower spatial correlation than the 
temporal correlation reflects that visibility data are spatially noisier (Lin 
and Li, 2016). Grid-Converted PM2.5 improves upon GEOS-Chem sim-
ulations by correcting its wintertime underestimate and summertime 
overestimate. The temporal correlation coefficient, temporal regression 
slope, spatial correlation coefficient and spatial regression slope of 
converted PM2.5 data are better than GEOS-Chem simulation results 
(0.84, 0.70, 0.73 and 0.80, respectively). 

Future research will apply the inference method to all months in 
multiple years in the NCP to further test the robustness of the conversion 
method proposed here, with the goal of finally applying the method for a 
reliable retrieval of multi-decadal PM2.5 variability embedded in the 
visibility data. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Fig. 6. (a) Spatial correlation, (b) temporal correlation, (c) spatial bias (units: μg/m3) and (d) linear regression slope (for spatial data) of Grid-Converted PM2.5 
concentrations with respect to PM2.5 measurements in each station-to-grid conversion case, as a function of the distance (i.e., radius ranging from 0.1� to 2.0�) from 
the visibility station to the grid cell center. 
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