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Abstract
This study reports a theoretical understanding of multiscalar drought indices based on the relationship between precipitation and
Standardized Precipitation Index (SPI). To unveil the multiscalar structure of precipitation, the advanced technique of wavelet
decomposition is systematically applied to dissect the precipitation into a number of orthogonal components according to
different time scales. A case study over Southwest China demonstrated a time lag or a synchronous correlation, depending on
the time scale, between precipitation and the SPI, with precipitation always leading the SPI. The delayed response of the SPI to
precipitation becomes more significant as the temporal scale increases, while the lead-lag effect vanishes at the shortest time
scales. Most importantly, the SPI at a specific time responds primarily to the corresponding precipitation component, regardless
of the contribution of its variance to the total variability. The conclusions obtained in the case study are further strengthened by
global analysis. Moreover, the lag time between the SPI and precipitation at longer time scales has great geographic diversity
worldwide, in contrast to shorter time scales, which have spatially uniform response times irrespective of site. In addition, we also
clarify two core concepts that are easily confused, time scale and lag time. Finally, our study highlights the prominent utility of a
multiscalar drought index to detect drought for a wide range of time scales compared to other metrics with rigid time scale, owing
to the multistructural property of precipitation that results in multiscalar drought.

1 Introduction

Drought is the world’s costliest natural disaster, causing tre-
mendous economic losses annually and affecting more people
than any other form of natural disaster (Wilhite 2000).
Moreover, drought is among the most complex of climatic
phenomena, mainly because it is difficult to quantify its sever-
ity, describe its spatial coverage, and pinpoint its beginning

and end (Wilhite 2006). A drought index, which is synthetic
information about wet and dry conditions, is central to the
identification and quantification of drought phenomena and
is especially indispensable for policy makers (Heim 2000).
In past decades, various drought indices of varying complex-
ity and algorithms have been developed in order to provide a
quantitative and objective evaluation of drought (Heim 2002;
Dai 2011a). The most popular drought indices with extensive
application include the Palmer Drought Severity Index (PDSI)
(Palmer 1965; Wells et al. 2004), the Standardized
Precipitation Index (SPI) (McKee et al. 1993), and the
Standardized Precipitation Evapotranspiration Index (SPEI)
(Vicente-Serrano et al. 2010). The relationship among differ-
ent drought indices has been extensively examined in previous
studies. McKee et al. (1995) pointed out that the PDSI had the
highest correlation to the SPI with a 10–14 month time scale
for most individual stations in the USA; Guttman (1998)
reached a similar conclusion. Recently, Vicente-Serrano et
al. (2010) investigated the correlation between the PDSI and
SPEI at different time scales globally and concluded that a
high correlation was maintained at time scales of 12–
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18 months. Vicente-Serrano et al. (2011a) found that the SSI
(Standardized Streamflow Index) was highly correlated with
both the SPEI and SPI at time scales of 3–8 months on the
northwest Iberian Peninsula. McEvoy et al. (2012) evaluated
two multiscalar drought indices, SPEI and SPI, and suggested
that both indicators were remarkably correlated to surface
water availability throughout Nevada and eastern California,
with SPEI showing some advantage over SPI.Wang and Chen
(2014) investigated the correlation between the PDSI and
SPEI within China and suggested that how well the SPEI
correlates with PDSI depends on the time scale: at a time scale
of less than 10 months, a poor correlation is observed; at a
time scale of greater than 10 months, the correlation coeffi-
cient between SPEI and PDSI remains between 0.7 and 0.9. In
particular, Vicente-Serrano et al. (2012) provided a global as-
sessment to compare different indices including the SPEI, SPI,
and four versions of the PDSI.

However, the basic relationship between precipitation and
drought indices is usually overlooked and poorly understood,
though precipitation is usually a dominant variable in the for-
mulation of a drought index. Consequently, the purpose of this
study is to reveal the quantitative relationship between precip-
itation and drought indices. The SPI is chosen as a represen-
tative multiscalar drought index since it depends entirely on
precipitation and ignores other variables. As we know, the SPI
can be calculated at different temporal scales, enabling it to
identify different types of drought. However, the multiscalar
structure of precipitation is not apparent; towards this goal, the
wavelet decomposition technique is applied to dissect the pre-
cipitation at different time scales. Despite the popularity of
wavelet analysis in atmospheric science to determine the dom-
inant period of a time series and how it varies with time
(Meyers et al. 1993; Torrence and Compo 1998), wavelet
decomposition is seldom used to decompose a time series into
several components according to different time scales.

This paper is structured as follows: The mathematical prin-
ciples of wavelet decomposition and the SPI are respectively
introduced in Sections 3.1 and 3.2, after a brief description of
data sources in Section 2. To provide an in-depth view, a
detailed case study is presented in Section 4. Subsequently,
the research scope is expanded to the global scale and
discussed in Section 5. Finally, Section 6 is devoted to con-
cluding remarks and further discussion. Southwest China,
covering 22.25–31.75° N, 98.75–109.25° E, is chosen as the
research case, since it has experienced massive and prolonged
droughts over the last decade (Wang et al. 2015, 2018).
Droughts in Southwest China rank among the most extreme
in the world over the past decade (Orlowsky and Seneviratne,
2013), and receive widespread attention from both the gov-
ernment and academic sectors in China. All these drought

events resulted in crop failure, lack of drinking water, ecosys-
tem destruction, health problems, and even deaths (Qiu,
2010). Thus, it is meaningful to choose Southwest China as
a research case.

2 Data

The monthly precipitation dataset used to carry out the case
study over Southwest China has 0.5° × 0.5° horizontal grids
and covers the period from 1961 to 2011. This dataset is elab-
orated by the National Meteorological Information Center of
the China Meteorological Administration and is created based
on 2474 ground observatories in China that have been sub-
jected to rigorous quality control. A digital elevation model is
introduced in the process of interpolation to take topographic
effects into account.

In parallel, global monthly mean precipitation data are re-
trieved from the Global Precipitation Climatology Project
(GPCP) (Adler et al. 2003), which is established and managed
by the Global Energy and Water Cycle Experiment
(GEWEX). This is a merged analysis that combines rain
gauge data from more than 6000 stations worldwide and var-
ious satellite-based estimates of precipitation. The GPCP pro-
duces the best known and widely used global precipitation
data in the meteorological community, covering the period
from 1979 to 2011 at a horizontal resolution of 2.5°. Even
though the GPCP data have global coverage, ocean data are
excluded from the analyses and only global land data are
utilized, since drought and its related impacts over land are
of primary concern.

3 Methodology

3.1 Wavelet decomposition

Wavelet decomposition (WD), also called multiresolution
analysis, is capable of decomposing a time series into several
components, each of which is associated with a particular time
scale. The WD concept and realization were initiated by
Mallat (1989) and Meyer and Salinger (1995), and WD has
found frequent application in signal processes and applied
mathematics. Here, only a brief description of WD is present-
ed; detailed information can be found in BTen Lectures on
Wavelets^ (Daubechies 1992).

The formal definition of WD of L2(ℝ) is a collection of
successive closed subspaces {Vj}j ∈ℤ of L2(ℝ) satisfying
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V j⊂V j−1

∪
j∈ℤ

V j ¼ L2 ℝð Þ
∩
j∈ℤ

V j ¼ 0f g

f ∈V j⇔ f 2⋅ð Þ∈V j−1

There exists ϕ ∈ V0 such that ϕ ⋅−kð Þ; k ∈ ℤf g is orthonormal basis for V0

ð1Þ

In wavelet decomposition, ϕ is often called the Bscaling
function.^ Let ϕj, k(x) = 2−j/2ϕ(2−jx − k); condition (1) implies
that {ϕj, k, k ∈ℤ} is an orthonormal basis that spans Vj for
all j ∈ℤ. Defining Wj to be the orthogonal complement of Vj
in Vj − 1, they are related by

V j−1 ¼ V j⊕W j ð2Þ

The vector space Vj − 1 is a linear combination of the
Bsmooth^ subspace Vj and the Bdetailed^ subspace Wj. The
basic theorem of multiresolution analysis is that when a se-
quence of closed subspaces satisfies condition (1), there exists
{ψi, j(x) = 2−j/2ψ(2−jx − k), k ∈ℤ}, in which ψi, j is generated
by the translation and dilation of the Bwavelet function^ ψ,
which forms the orthonormal basis of subspace Wj.

In the case of discrete time series, space V0 has the finest
resolution and contains the original data. Therefore, the pro-
jection of the data onto {Vj, j = 1, 2, 3…} has increasingly
coarser resolution. Starting with V0, the decomposition pro-
cess at increasingly coarser resolution can be applied recur-
sively, which can be expressed as

V0 ¼ V1⊕W1

¼ V2⊕W2⊕W1

¼ V3⊕W3⊕W2⊕W1

¼ …

ð3Þ

Data projected onto Vj is referred to as the decomposition
of data at level j. Therefore, the wavelet decomposition of the
signal at level j comprises the hierarchy of detailed informa-
tion (W1 toWj) and the coarsest smoothing representation (Vj).

In practice, we need to choose the scaling function ϕ,
wavelet function ψ, and maximum level of decomposition j.
In this study, Daubechies scaling and wavelet functions as
shown in Fig. 1 are chosen to perform decomposition and
the maximum decomposition level is 5.

3.2 Standardized precipitation index

The Standardized Precipitation Index (SPI), as first introduced
by McKee et al. (1993), is an effective tool for identifying the
severity and period of droughts at multiple time scales. A
detailed and clear description of the steps required to calculate
the SPI is provided in Edwards and McKee (1997). The com-
putation of the SPI is based on predefined time scales N,
which correspond to the past n months of precipitation totals.
The procedure consists of two main steps: first, a cumulative
series is created at the desired time scale; second, the resultant
data are fitted to the two-parameter Gamma distribution and
then transformed into a normal distribution. The climatic clas-
sification according to the SPI is shown in Table 1. Because
the time scale obtained by wavelet decomposition can only be
a power of 2, the SPI is accordingly calculated at time scales of
20, 21, 22, 23, 24, and 25 months. Hereafter, P-n and SPI-n are
referred to as the precipitation and SPI at a time scale of n
months, respectively.

Fig. 1 Daubechies scaling (solid red line) and wavelet function (dashed
blue line)

Table 1 Drought classifications according to SPI values

SPI value Category

SPI ≥ 2.00 Extremely wet

1.50 ≤ SPI < 2.00 Very wet

1.00 ≤ SPI < 1.50 Moderately wet

− 1.00 ≤ SPI < 1.00 Near normal

− 1.50 ≤ SPI < − 1.00 Moderate drought

− 2.00 ≤ SPI < − 1.50 Severe drought

SPI ≤ − 2.00 Extreme drought
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Fig. 3 Temporal variation of
precipitation (solid red lines) and
SPI (dashed blue lines) at time
scales of 25, 24, 23, 22, 21, and
20 months. The maximum lagged
correlation coefficient and its
corresponding lag time are given
at the top right in each subplot

Fig. 2 The six components of the
precipitation series over
Southwest China at time scales of
25, 24, 23, 22, 21, and 20 months
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4 A case study

This section aims to vividly illustrate the relationship between
precipitation and the SPI, while a global analysis is described
in Section 5. First, the annual cycle of the precipitation series
over Southwest China is removed prior to wavelet decompo-
sition. Second, the decomposition procedure is applied recur-
sively, until the coarsest level of 5 is reached. Consequently,
the multiresolution representation of the original data consists
of the coarsest Bsmooth^ representation at a time scale of
25 months (Fig. 2a), and the hierarchy of Bdetailed^ compo-
nents at time scales of 24, 23, 22, 21, and 20 months as shown in
Fig. 2b–f. Figure 2 demonstrates that the amplitude and fre-
quency steadily increase from longer time scales to shorter
ones. The 25-month component appears to have interdecadal
variability, with markedly long-term precipitation deficits in
the last 10 years, which is in accordance with the massive and
frequent drought events in Southwest China. In contrast, high-
frequency oscillations with shorter duration are associated
with shorter time scale variability.

The quantitative relationship between precipitation and the
SPI at multiple time scales is examined by finding the lag that
results in the maximum time-lagged correlation, as shown in
Fig. 3. The time lag denotes how quickly the droughts at a
specific time scale respond to precipitation anomalies. In fact,
as shown below, the drought and corresponding index have a
synchronous or delayed response to precipitation, depending
on the time scale. At the time scale of 25 months, a positive lag
of 11 months is identified, coupled with a maximum correla-
tion of 0.8, indicating that the response time from the precip-
itation surplus or deficit to a rise or fall in the 32-month SPI
indicative of hydrological wetness/dryness is 11 months. This
phenomenon can be ascribedmainly to the considerable mem-
ory or persistence characteristics of hydrological systems in-
cluding streamflow, groundwater level, reservoir, and lake
storage, etc. As seen from Fig. 3a–f sequentially, the decreases
in time scale not surprisingly lead to a decrease in the time lag
at which the two series have the highest correlation. In partic-
ular, there is no delay between precipitation and the SPI at
time scales of both 20 and 21, because the short-term SPI is
closely tied to soil moisture, which is greatly sensitive to pre-
cipitation behavior.

These two methods, wavelet decomposition and the SPI
procedure, which are based on completely different mathe-
matical principles, both successfully detect the essential char-
acteristics of precipitation, since all the time-lagged correla-
tions irrespective of time scales are significant at the 99%
confidence level. As stated in numerous studies, drought is a
multiscalar phenomenon. Furthermore, the multiscalar char-
acter of drought originates from the multistructural property of
precipitation, each occurring at different time scales.
Specifically, the variation in the dry/wet state as reflected by
the drought index at a particular time scale is regulated

predominantly by the subseries separated from original pre-
cipitation data at that scale and is virtually unperturbed by any
other components.

Table 2 shows the contribution (%) of each component to
the total variance. Remember that the decomposed compo-
nents are linearly independent, as illustrated in Expression 3,
and the original series can be regenerated as a sum of them, so
the variance contribution can be easily calculated as the ratio
of the component variance to the total. Table 2 demonstrates
that the dominant contribution to the total variance of precip-
itation comes from the short and intermediate temporal scale
structures, with the proportion explained by the 20- to 22-
month series accounting for 86.1%. Furthermore, the variance
contributions drastically decrease as the time scale increases.
Although the component of longer time scales adds a relative-
ly minor contribution to the total variability, it is indispensable
to the long-term drought phenomenon and cannot be
neglected. To substantiate this, we use the precipitation com-
ponent at the time scale of 25 months, and all other parts

Fig. 4 Temporal variations in SPI constructed from the original
precipitation data (solid red line), the component at the time scale of
25 months (dashed blue line in upper panel), and all the other
components comprising the time scales ranging from 20 to 24 months
(dashed blue line in bottom panel), respectively

Table 2 Variance contributions of the six precipitation components (%)

Time scale (months) 25 24 23 22 21 20

Variance contribution (%) 4.1 2.6 7.2 18.1 24.8 43.2
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together whose variance contribution is 95.9%, to respectively
construct the SPI series. The result depicted in Fig. 4 shows
that the SPI-32 derived from the 25-month precipitation series
perfectly resembles that calculated from the original data, with
a simultaneous correlation coefficient of 0.92, while the SPI-
32 induced from the precipitation excluding the 25-month
component fails to match the actual pattern. For instance, the
SPI series, computed from the aggregated components vary-
ing on time scales shorter than 24 months (Fig. 4b), demon-
strates strong interannual variability without a significant
trend in the last decade, which contradicts the observed reality
of the negative values of the SPI-32 along with a persistent
decreasing trend in this period. Consequently, it can be con-
cluded that despite the very small contribution of the 25-month
scale precipitation to the variance, to a great extent it deter-
mines the fluctuation of the SPI-32. This can be explained
physically in that hydrological drought (long time scale), in
terms of streamflow, ground water level, and so on, typically
responds to the slowly varying (low frequency) component of
precipitation and is insensitive to the components at shorter
temporal scales, which have high-frequency oscillations.

Finally, it is necessary to stress that lag time and time scale
are two completely different concepts. The time scale in the
formulation of the SPI may lead to the misinterpretation that
the time scale is equivalent to the time delay in the response of

the SPI to precipitation. As seen in Fig. 3a, however, the 32-
month SPI lags the 32-month precipitation by 11 months rath-
er than 32 months. This can also be verified in Fig. 4a, in
which the time series (dashed blue line) constructed from the
32-month precipitation leading the SPI by 11 months success-
fully reproduces the 32-month SPI (solid red line). Thus, the
time scale reflects the behavior of the time series itself, while
lag time refers to the time elapsed from the center of the
excess/insufficient rainfall to the SPI peak/valley. This con-
clusion is further supported in the global analysis of the
response-time lag, as discussed in Section 5.

5 Global analysis

In this section, the relationship between precipitation and the
SPI is further investigated on a global scale. More specifically,
the lag time in each grid cell is identified when the lagged
correlation reaches its maximum. Therefore, a higher grid cell
value denotes a longer response time of drought to a precipi-
tation surplus or deficit. Figure 5 portrays the spatial patterns
of lag time between precipitation and the SPI, with precipita-
tion always leading the SPI. To provide a useful statistical
description of the lag times worldwide, histograms are created

Fig. 5 Spatial distribution of the
lag time between precipitation
and the SPI at time scales of 25,
24, 23, 22, 21, and 20 months with
the precipitation always leading
the SPI
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in Fig. 6 to display the percentage of total grid cells falling in
each of the time lags (0–19 months and ≥ 20 months).

Overall, the lag time between precipitation and the SPI
gradually declines with the decrease in the time scale, as evi-
denced in both Figs. 5 and 6. It is also noteworthy that the
percent distribution of time lags at longer time scales covers a
wider range and ismuch less concentrated. At the time scale of
25 months, the delayed responses of the SPI-32 to P-32 have
great geographic diversity, varying spatially from less than
10months to a maximum of more than 20months. This prom-
inent feature can also be recognized in the percent frequency
distribution as shown in Fig. 6a. North Africa, Central Asia,
North China, and the Amazon basin appear to have a longer
memory time (> 20 months), implying a considerable lag in
the response of the dry/wet state to precipitation anomalies,
while other locations are generally characterized by interme-
diate lag times (11–18 months). Because of the large spatial

deviation, the distribution is broad and flat (Fig. 6a), with the
peak probability being only 15.2% at lag = 15 months.
However, lag times ranging from 11 to 18 months account
for 76%, which indicates that the typical lag time between
the SPI-32 and P-32 globally is in the narrower interval be-
tween 11 and 18 months. As the time scale decreases, the
spatial discrepancies of lag time tend to diminish, and there
is a more tightly clustered probability distribution. In particu-
lar, uniform lag times valued at 0 for the whole globe are
observed at the time scale of 20 month, suggesting the syn-
chronous response of the SPI to precipitation irrespective of
location. From time scales of 24 to 21 months, the central value
of lag time corresponding to peak probability continuously
shifts to the left. At the time scale of 23 months, for example,
the maximum correlation between precipitation and the SPI is
achieved at a delay of 3 or 4 months, each of which contrib-
utes roughly half of all grid cells; whenwemove to time scales

Fig. 6 Percent frequency
distribution of global lag times
between precipitation and the SPI.
x- and y-coordinates denote the
lag time and percentage of the
total, respectively
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of 22 and 21 months, a lag time of less than 2 months domi-
nates over the globe.

As stated in Section 4, the concept of time lag is quite
different from that of time scale. More precisely, as evidently
illuminated in both Figs. 5 and 6, the lag time between pre-
cipitation and the SPI is commonly smaller than the time
scale. At a time scale of 24 months, for example, the time lags
are confined mainly between 7 and 9 months and never ex-
ceeds 12 months.

6 Conclusions and discussions

The main objective of this study is to provide a theoretical
interpretation of multiscalar drought indices by examining
the relationship between precipitation and the SPI. The SPI
is multiscalar, enabling it to provide drought monitoring at
different time scales. However, the multiple structures behind
precipitation are not obvious and must first be identified. To
this end, the wavelet decomposition technique is employed to
decompose the precipitation into a number of orthogonal com-
ponents according to different time scales.

A case study over Southwest China is first performed,
which can offer additional detailed insights into this issue.
Based on wavelet decomposition, the observed time series is
composed of signals with different time scales. At the shorter
time scales, on the one hand, the oscillation demonstrates a
high frequency, short duration, and large amplitude; on the
other hand, long duration and low frequency are observed at
longer time scales. Precipitation and the SPI demonstrate a
time-lagged relationship, with precipitation leading the SPI
and the lag time being time-scale dependent. The longer the
time scale, the more significant the delayed response of the
SPI to precipitation, which is typically associated with hydro-
logical parameters. In contrast, the shorter scale SPI, related to
soil moisture and agricultural stress, exhibits an instantaneous
reaction to precipitation behavior, with little or no delay. Most
importantly, the SPI at a specific time responds almost exclu-
sively to the corresponding precipitation component, despite
the contribution of its variance to the total variability. In addi-
tion, two core concepts that are easily confused are clarified:
time scale and lag time. The former is tied to the behavior of
the time series itself, while the latter refers to the time between
the peak rainfall and the peak in the SPI.

The global response time of the SPI to precipitation is then
explored, further verifying and strengthening the conclusions
from the case study. Moreover, we find that the magnitude of
the lag time is highly site specific at longer time scales, rang-
ing from 10 months to more than 20 months. In contrast,
shorter time scales result in a spatially homogeneous distribu-
tion of lag time around the globe.

Finally, we would like to comment on researches related to
drought indices. Recently, there has been a debate over which

drought index is superior (Dai 2011b; Vicente-Serrano et al.
2011b). Our study reveals that the multiscalar nature of
drought, as emphasized in many studies (Guttman 1999;
Hayes et al. 1999; Khan et al. 2008), actually originates from
the multistructural property hidden in precipitation variation,
so that multiscalar drought indices such as the SPI are more
suitable for detecting drought at a wide range of time scales
than are other metrics with fixed time scales. In other words, a
multiscalar drought index is a true reflection of the internal
essence of precipitation variability. In fact, the SPI is now
accepted by the World Meteorological Organization (WMO)
as the universal meteorological drought index for more effec-
tive drought monitoring and early warning (Hayes et al. 2011).
The results in this study favorably support the recommenda-
tions outlined in the BLincoln Declaration on Drought
Indices.^ In addition to the SPI, the SPEI, which is based on
the mathematical principle of the SPI and thus inherits its
versatility but also incorporates the influence of potential
evaporation on drought, is also highly recommended.
Recently, Wang et al. (2016) integrate SPEI at multiple time
scales into a new metric called Comprehensive Multiscalar
Indicator (CMI) that is specifically designed for super drought
detection. Therefore, the collaborative use of SPEI and CMI
can provide understanding and monitoring drought
phenomenon.

Acknowledgments We thank Prof. Wen Zhou (City University of Hong
Kong) for a useful discussion during the course of this work. The editor
and anonymous reviewers provide constructive comments and sugges-
tions which improve the quality of this paper. Also, we are grateful to the
China Meteorological Data Service Center for providing the precipitation
data in China, as well as the NOAA/OAR/ESRL PSD for publicly sharing
the GPCP data.

Funding information This research was supported by the National
Natural Science Foundation of China Grant Nos. 41661144016 and
41505069, Public science and technology research funds projects of
ocean Grant No. 201505013, and Open Research Fund Program of
Plateau Atmosphere and Environment Key Laboratory of Sichuan
Province Project No. PAEKL-2018-C1.

References

Adler RF, Huffman GJ, Chang A, Ferraro R, Xie PP, Janowiak J, Rudolf
B, Schneider U, Curtis S, Bolvin D (2003) The version-2 global
precipitation climatology project (GPCP) monthly precipitation
analysis (1979-present). J Hydrometeorol 4(6):1147–1167

Dai A (2011a) Drought under global warming: a review. Wiley
Interdiscip Rev Clim Chang 2:45–65

Dai A (2011b) Characteristics and trends in various forms of the palmer
drought severity index during 1900-2008. J Geophys Res 116(D12):
D12115

Daubechies I (1992) Ten lectures on wavelets. Cambridge University
Press, Cambridge, U. K.

Edwards DC, McKee TB (1997) Characteristics of 20th century drought
in the United States at multiple time scales. Atmos Sci pap 634,
Colorado state Univ, Fort Collins

1472 L. Wang et al.

Author's personal copy



Guttman NB (1998) Comparing the palmer drought index and the stan-
dardized precipitation index. J AmWater Resour Assoc 34:113–121

Guttman NB (1999) Accepting the standardized precipitation index: a
calculation algorithm. J Am Water Resour Assoc 35:311–322

HayesMJ, SvobodaMD,Wilhite DA, Vanyarkho OV (1999)Monitoring
the 1996 drought using the standardized precipitation index. Bull
Am Meteorol Soc 80(3):429–438

Hayes M, Svoboda M, Wall N, Widhalm M (2011) The Lincoln declara-
tion on drought indices: universal meteorological drought index rec-
ommended. Bull Am Meteorol Soc 92:485–488

Heim RR (2000) Drought indices: a review. in Drought: A Global
Assessment, hazards disasters Ser., vol. I, edited by D. A. Wilhite,
pp. 159–167, Routledge, New York

Heim RR (2002) A review of twentieth-century drought indices used in
the United States. Bull Am Meteorol Soc 83:1149–1165

Khan S, Gabriel H, Rana T (2008) Standard precipitation index to track
drought and assess impact of rainfall on watertables in irrigation
areas. Irrig Drainage Syst 22(2):159–177

Mallat SG (1989) A theory for multiresolution signal decomposition: the
wavelet representation. Pattern Analysis and Machine Intelligence,
IEEE Transactions on 11(7):674–693

McEvoy DJ, Huntington JL, Abatzoglou J, Edwards L (2012) An evalu-
ation of multiscalar drought indices in Nevada and eastern
California. Earth Interact 16:1–8

McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought
frequency and duration to time scales, preprints, 8th Conf. On ap-
plied climatology, Anaheim, CA, Amer. Meteor. Soc., 179–184

McKee TB, Doesken NJ, Kleist J (1995) Drought monitoring with mul-
tiple time scales, preprints, 9th Conf. On applied climatology,
Dallas, TX, Amer. Meteor. Soc., 233–236

Meyer Y, Salinger DH (1995), Wavelets and operators, Cambridge
University Press

Meyers SD, Kelly BG, O'Brian JJ (1993) An introduction to wavelet
analysis in oceanography and meteorology: with application to the
dispersion of Yanai waves. Mon Wea Rev 121:2858–2866

Orlowsky B, Seneviratne SI (2013) Elusive drought: uncertainty in ob-
served trends and short- and long-term CMIP5 projections. Hydrol
Earth Syst Sci 17(5):1765–1781

Palmer WC (1965) Meteorological drought. U.S. Department of
Commerce research paper 45, pp. 58

Qiu J (2010) China drought highlights future climate threats. Nature 465:
142–143

Torrence C, CompoGP (1998) A practical guide to wavelet analysis. Bull
Am Meteorol Soc 79(1):61–78

Vicente-Serrano SM, Beguería D, López-Moreno JI (2010) A multiscalar
drought index sensitive to global warming: the standardized precip-
itation evapotranspiration index. J Clim 23(7):1696–1718

Vicente-Serrano SM, López-Moreno JI, Drumond S, Gimeno L, Nieto R,
Morán-Tejeda E, Lorenzo-Lacruz J, Beguería S, Zabalza J (2011a)
Effects of warming processes on droughts and water resources in the
NW Iberian Peninsula. Clim Res 48(2–3):203–212

Vicente-Serrano SM, Beguería S, López-Moreno JI (2011b) Comment on
"characteristics and trends in various forms of the palmer drought
severity index (PDSI) during 1900-2008" by Aiguo Dai. J Geophys
Res 116(D19):D19112

Vicente-Serrano SM, Beguería D, Lorenzo-Lacruz J, Camarero JJ,
López-Moreno JI, Azorin-Molina C, Revuelto J, Morán-Tejeda E,
Sánchez-Lorenzo A (2012) Performance of drought indices for eco-
logical, agricultural and hydrological applications. Earth Interact
16(10):1–27

Wang L, Chen W (2014) Applicability analysis of standardized precipi-
tation evapotranspiration index in drought monitoring in China.
Plateau Meteorology 33(2):423–431 (in Chinese)

Wang L, Chen W, Zhou W, Huang G (2015) Drought in Southwest
China: a review. Atmos Oceanic Sci Lett 8(6):339–344

Wang L, ChenW, ZhouW, HuangG (2016) Understanding and detecting
super extreme droughts in Southwest China through an integrated
approach and index. Q J R Meteorol Soc 142(694):529–535

Wang L, Huang G, Chen W, Zhou W, Wang W (2018) Wet-to-dry shift
over Southwest China in 1994 tied to the warming of tropical warm
pool. Clim Dyn, https://doi.org/10.1007/s00382-018-4068-8

Wells N, Goddard S, Hayes MJ (2004) A self-calibrating palmer drought
severity index. J Clim 17(12):2335–2351

Wilhite DA (2000) Drought as a natural hazard: concepts and definitions,
in Drought: A Global Assessment, Hazards Disasters Ser., vol. I,
edited by D. A. Wilhite, pp. 3–18, Routledge, New York

Wilhite D A (2006) Drought monitoring and early warning: concepts,
progress and future challenges, WMO-no. 1006, World
Meteorological Organization, Geneva, Switzerland

Towards a theoretical understanding of multiscalar drought indices based on the relationship between... 1473

Author's personal copy

https://doi.org/10.1007/s00382-018-4068-8

	Towards...
	Abstract
	Introduction
	Data
	Methodology
	Wavelet decomposition
	Standardized precipitation index

	A case study
	Global analysis
	Conclusions and discussions
	References


