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Abstract
The present study documents the elevation-dependent sensible heat (SH) flux trend over the Tibetan Plateau (TP). The SH 
displays a decreasing trend over the TP above 2000 m with the magnitude of trend increasing with the elevation, but an 
increasing trend at low elevation stations. The above feature is more obvious in spring and summer. Surface wind speed is 
consistently the major contributor to the variation in SH trend from lower to higher altitude areas. Meanwhile, the role of the 
difference of ground-air temperature  (Ts–Ta) in SH trend is enhanced above 2500 m regions. The SH variation associated with 
the change in  Ts–Ta may be influenced primarily by the diminution in sunshine duration and snow depth at higher-altitude 
regions, and the latter is particularly important. The portion of the SH variation related to the change in surface wind speed 
is mainly attributed to the dynamic process related to the Pacific Decadal Oscillation (PDO). The warming in the northwest-
ern Pacific in relation to the switch of the PDO from a warm phase to a cold phase in the recent decades causes divergence 
anomalies in the upper troposphere, which induces propagation of a wave pattern extending eastward until reaching the 
southwest TP. That leads to an enhancement in divergence of the upper troposphere and subsequently a boost in surface 
convergence and rising motion over southwest TP. Consequently, due to the easterly anomaly to the east of the convergence, 
surface wind speed is reduced over the central and eastern TP, especially in the higher altitude areas.

Keywords Altitude dependence · Surface sensible heat trend · Tibetan Plateau · The difference of ground-air temperature · 
Surface wind speed

1 Introduction

It is well known that solar radiation is the source of surface 
energy, and the solar irradiance heavily relies on the sta-
tus of underlying surface—terrain height, for instance. The 
higher the elevation, the more the solar irradiance reach-
ing the Earth’s surface due to less absorption and reflection 

of solar radiation by the atmosphere. In turn, the increased 
difference of ground-air temperature brings about the heat 
transmission from surface land to air in the form of sensible 
heat (SH). Consequently, the SH over the plateau tends to 
be particularly striking.

The Tibetan Plateau (TP) is world-renowned for its vast 
acreage, high altitude, and extremely complex terrain. It 
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exerts a great influence on regional and even global climate 
via its thermal and dynamic forcing mechanism (Yeh et al. 
1957; Yeh and Gao 1979; Yanai et al. 1992; Ye and Wu 
1998; Chakraborty et al. 2002, 2006; Duan and Wu 2005; 
Boos and Kuang 2010; Duan et al. 2012; Wu et al. 2012a, 
2014; Yao et al. 2012). As a huge heat source towered in 
the free atmosphere, the TP transfers heat from surface land 
to the air in the form of sensible heat and latent heat trans-
fer, and effective radiation of the ground, among which SH 
makes the maximum contribution annually, especially in 
spring and summer (Yeh et al. 1957; Yeh and Gao 1979; 
Duan and Wu 2008; Yang et al. 2011a; Wu et al. 2014). 
During spring and summer, the water vapor and air mass in 
the low level atmosphere around the plateau are suctioned 
to the TP, converging and ascending there. All of these are 
driven by the heating, which is vividly described as Sensible 
Heating Atmosphere Pumping (SHAP; Wu et al. 1997, 2007, 
2014). The SH is one of the crucial important causes for trig-
gering the convective precipitation and the latent heat release 
over the TP and its downstream regions (Wan and Wu 2007; 
Wu et al. 2007, 2012b, 2014, 2016; Wan et al. 2009; Duan 
et al. 2011, 2013; Liu et al. 2012; Wang et al. 2014). What’s 
more, the TP, reputed as the Asian water tower, is the cradle 
of many prominent Asian rivers (Immerzeel et al. 2010; Yao 
et al. 2012). The precipitation on the plateau and its lower 
reaches has a remarkable impact on the river runoff, the lake 
water level, and even more on the drought and waterlogging 
in its downstream regions. The SH also has a notable effect 
on the onset and intensity of the Asian summer monsoon 
(Wu et al. 2012a, c, 2014, 2016; Liu et al. 2013; Duan et al. 
2013). In addition, the SH over the TP can also exert an 
influence on the evolution of global atmospheric circula-
tion and the abnormal of climate by means of Rossby wave 
dispersion (Wu et al. 2012a, 2014, 2016; Wang et al. 2014).

Accordingly, the variation in SH over the TP has impor-
tant implications for the redistribution of energy and the 
exchange of momentum, for the change of heat and mois-
ture transmission between the land and atmosphere, for the 
hydrologic cycle over the TP and its downstream regions, 
and also for the evolution of the atmospheric circulation and 
the anomaly of the climate for regional and even global. 
What’s more, all of these plateau’s pivotal roles are closely 
correlated with its height. In other words, the distinct SH 
over the TP, compared with that on flat land, should give the 
credit to high elevation to a large extent. The mechanism of 
elevated heating has been demonstrated in studies (Yeh and 
Gao 1979; Molnar and Emanuel 1999; Wu et al. 2014; Hu 
and Boos 2017a, b). However, the analysis on the spatial 
variation of the SH over the TP is prone to be confined to the 
horizontal dimension (e.g., Duan and Wu 2008; Duan et al. 
2011). It was mentioned in the articles that perhaps the trend 
in SH was related to elevation in spring (Duan et al. 2011), 
but the trends in all variables associated with SH may not 

be directly related to elevation (Wang et al. 2012). However 
there were no details about the change of SH with the eleva-
tion. It is still unclear whether the trend of SH over the TP 
has an altitude dependence or not, and what is the major 
contributor to it. Hence, this article will give an explicit 
demonstration about it, and that will help to better assess 
energy fluxes and moisture availability at the land surface.

The overall structure is as follows. Section 2 described 
briefly the data and methodology applied in this study. The 
elevation-dependency of the trend in SH over the TP is intro-
duced in Sect. 3 and the possible causes are discussed in 
Sect. 4, followed by summary and discussions in Sect. 5.

2  Data and methodology

2.1  Data

The data used in this study comprise: the regular surface 
meteorological observations for the TP area offered by the 
China Meteorological Administration (CMA), in which 
the variables of four times daily consist of ground surface 
temperature  (Ts), surface air temperature  (Ta), wind speed 
at 10 m above the surface  (V0), and daily snow depth and 
sunshine duration; monthly mean U wind component, V 
wind component, vertical velocity, air temperature, and 
geopotential of the European Centre for Medium-Range 
Weather Forecast Interim Reanalysis (ERA-Interim; Dee 
et al. 2011) at a horizontal resolution of 1° × 1°; monthly 
SST data during the same period from the Met Office Had-
ley Centre Sea Surface Temperature (HadISST) dataset 
(Rayner et al. 2003), provided at a resolution of 1° × 1° 
(http://hadob s.metoffi ce.com/hadis st/data/downl oad.html); 
daily normalized difference vegetation index (NDVI) from 
NOAA Climate Data Record Program (Pedelty et al. 2007), 
with a resolution of 0.05° × 0.05° (https ://www.ncdc.noaa.
gov/cdr/terre stria l/norma lized -diffe rence -veget ation -index ); 
the PDO index is obtained from http://resea rch.jisao .washi 
ngton .edu/pdo.

The data periods above are all from January 1980 to 
December 2015, except for NDVI covering 1981–2014.

The locations and elevations of the stations involved in the 
present analysis are shown in Fig. 1, most of which are located 
in Qinghai, Xizang, Gansu and the western Sichuan in China. 
This dataset covers the domain of TP with 140 stations, and in 
general, the missing values of variables account for less than 
0.5% of the total records. The method of processing missing 
values in data is the same as applied in Duan and Wu (2008). 
To ascertain the elevation dependent variation of SH over TP, 
the 140 stations were divided into 8 altitudinal ranges with a 
500 m interval. The number of stations and the average eleva-
tion in each range are listed in Table 1. Among these stations, 
82 (58.6%) are above 2000 m, 48 (34.3%) above 3000 m, and 
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16 (11.4%) above 4000 m, which is sufficient for identifying 
and quantifying the elevation-dependency of SH notwithstand-
ing the sparse high-elevation observations.

2.2  Methods

The SH is calculated by the bulk aerodynamic method, which 
is widely applied in many studies related to TP (e.g., Yeh and 
Gao 1979; Chen et al. 1985; Li et al. 2001; Duan and Wu 
2008; Duan et al. 2011, 2013; Cui et al. 2015; Zhu et al. 2017):

SH = Cp �a CDH V0

(
Ts−Ta

)

Descriptions of the physical quantities in the above for-
mula are available in the referenced literature. In this study, 
Cp = 1005J kg−1 K−1 is the specific heat of dry air at con-
stant pressure. The changes in the air density ( �a ) should 
be subtle during the study period from 1980 to 2015 (Zhu 
et al. 2017), as well as the drag coefficient for heat ( CDH ), 
and their influence on the variation of SH is negligible 
though they vary from location to location. Thus, we assume 
CDH = 4 × 10−3 for the east of 85°E and CDH = 4.75 × 10−3 
for the west of 85°E (Li and Yanai 1996; Duan and Wu 2008; 
Duan et al. 2011, 2013; Zhu et al. 2017), and �a = 0.8 kg m−3 
(Yeh and Gao 1979; Duan and Wu 2008; Duan et al. 2011, 
2013). Consequently, in the procedure above, out of the three 
constants, the surface wind speed ( V0 ) and the difference in 
ground-air temperature ( Ts−Ta ), as the focus of this article, 
are the key factors influencing the evolution of SH.

3  Elevation‑dependent variation of SH 
trend

The trend of SH from 140 stations over TP shows that most 
of the stations have experienced statistically significant 
decreasing trend during 1980–2015 except for some stations 
below 2000 m elevation (Fig. 2a). The higher the altitude, 
the larger the negative trend. This elevation dependence 
feature is most obvious in spring. It is partially consistent 
with the conclusion mentioned in previous literature (Duan 
et al. 2011). The correlation coefficients between SH trends 
and elevations of 140 stations in spring and summer are 

Fig. 1  The locations and elevations for stations in 500-m-wide altitu-
dinal bands starting at 1000 m

Table 1  Number of stations 
and average elevation for eight 
altitudinal ranges

Altitudinal range (km) 1–1.5 1.5–2 2–2.5 2.5–3 3–3.5 3.5–4 4–4.5 4.5–5

Number of stations 36 22 16 18 15 17 13 3
Mean elevation (m) 1282 1774 2314 2785 3251 3735 4199 4551

Fig. 2  a Elevation-dependent 
variation of trend for SH of 140 
stations during 1980–2015. The 
black bold curve denotes eleva-
tion. Values exceeding the 95% 
significance level are presented 
in dots. b Correlation coef-
ficients between SH trends and 
elevations of 140 stations
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− 0.42 (at the 99% confidence level) and − 0.37(at the 99% 
confidence level), respectively, which are larger than those 
in autumn (− 0.17) and winter (− 0.09) (Fig. 2b). The eleva-
tion-dependence of the SH trend in spring principally results 
from more prominent decreasing trend in SH at higher alti-
tude, while that in summer is chiefly caused by larger trend 
at lower altitude.

To investigate the reason for the elevation dependency 
of SH trend, the trends of SH and relative variables for sta-
tions in 500-m-wide altitudinal bands during different sea-
sons are given in Fig. 3. Refer to Table 1 for the details 

about the ranges. Considering that there are only three sta-
tions above 4500 m and there is a narrow margin between 
their mean elevation and 4500 m, here the stations at the 
ranges of 4000–4500 and 4500–5000 m are merged together 
in Fig. 3. The SH weakens more strikingly as altitude goes 
up, especially in spring and summer (Fig. 3a), confirming 
the conclusions of the figure above. Compared with  Ts–Ta, 
the altitude dependence of  V0 trend over the TP (Fig. 3b) is 
more approximate to the variation in SH. The decreasing 
trend in  V0 is amplified with elevation in the four seasons, 
most notable in springtime. This conclusion is in accord with 

Fig. 3  Elevation-dependent variation for trends of SH and relative 
variables over TP during 1980–2015 for DJF, MAM, JJA, and SON. 
Bars represent elevations and trend magnitude is plotted on the y axis 

of right side according to the 7 elevation ranks of 140 stations. Num-
ber of stations in each elevation group is plotted on the x axis of bot-
tom
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the result of existing literature (Guo et al. 2017). In addition, 
the change of the trend in  Ts–Ta with altitude is related to 
the elevation-dependent variation in trend of  Ts consider-
ably. The positive trend of  Ts–Ta increases as the altitude 
ascends above 2500 m (Fig. 3c) owing to the elevation 
dependence of warming in  Ts there (Fig. 3d). But there was 
no strong elevational effect for  Ta in other seasons except in 
winter and autumn (Fig. 3e), which is consistent with the 
results in previous literature (Yan and Liu 2014; Pepin et al. 
2015). Various mechanisms and processes have been linked 
to the elevation-dependent warming. The most common 
explanation is associated with the snow-albedo feedback 
mechanism(Giorgi et al. 1997; Pepin and Lundquist 2008; 
Ceppi et al. 2010; Kothawale et al. 2010), moreover, water 
vapour and radiative fluxes (Philipona et al. 2005; Rang-
wala et al. 2009, 2010; Rangwala 2013), the cloud-radiation 
effects (Liu et al. 2009) and so on, are also responsible for it.

Does the variation in Fig. 3 indicate that wind speed 
is the main reason affecting altitude dependence of SH 
trend? Partial correlation (Zar 1999; Saiji and; Yamagata 

2003; Hu and Duan 2015)between SH trend and the rel-
evant variable trend  (Ts–Ta or  V0) of every successive 41 
stations is calculated sliding along the low-to-high eleva-
tion order (Fig. 4) to quantitatively analyze the relative 
importance of  Ts–Ta and  V0 to elevation-dependence of SH 
trend. On average, the effect of  Ts–Ta and  V0 on elevation-
dependence of SH trend is similar in winter and autumn 
(Fig. 4a, d). Nevertheless,  V0 is the major contributor to 
the variation in SH trend in spring and summer (Fig. 4b, 
c). Meanwhile, it is noteworthy that the role of  Ts−Ta in 
altitude-dependence of SH trend is enhanced in the regions 
above 2500 m. Moreover, the partial correlation between 
SH trend and  V0 trend sliding along the low-to-high eleva-
tion order shows small change with altitude in spring and 
summer. Thus it can be seen that the influence of  V0 trend 
on SH tendency may not be directly related to elevation 
despite notable. In other words,  V0 is a stable contributor 
to the variation in SH trend from lower to higher altitude 
areas. While the effect of  Ts–Ta on SH is more striking at 
higher altitude starting at 2500 m in springtime.

Fig. 4  Partial correlation between SH trend and various factor trend 
(Ts–Ta and V0) of every successive 41 stations sliding along the low-
to-high elevation order. Bars represent elevation and partial correla-

tion magnitude is plotted on the y axis of right side. Black dashed line 
indicates the 95% significance level
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4  Cause for elevation dependency of SH 
trend

What factors influence the elevation-dependent variation 
of SH over the TP by affecting  V0 or  Ts–Ta? Relatively 
high value of SH over the TP appears in spring, and so 
does the notable altitude dependence of SH trend. Con-
sequently, here we take spring as an example to demon-
strate. Three potential factors are analyzed in this study: 
sunshine duration that is a factor affecting on the amount 
of solar radiation reaching the earth’s surface (Stanhill 
and Cohen 2005; Sanchez-Lorenzo et al. 2008; Matuszko 
2014; Founda et al. 2014; Manara et al. 2015), snow depth 
that is a factor influencing surface albedo (Pedersen and 
Winther 2005; Flanner et al. 2011; Fletcher et al. 2012), 
and NDVI that is a factor impacting on surface roughness 
(Bastiaanssen et al. 1998; Hong et al. 2009; Zheng et al. 
2014).

The trend in MAM for sunshine duration, snow depth, 
and NDVI are exhibited in Fig. 5, as well as the correlation 
coefficients between SH trend and the three variable trend 

(sunshine duration, snow depth, and NDVI) of every suc-
cessive 41 stations sliding along the low-to-high elevation 
order. To facilitate analysis, NDVI used in Fig. 5 has been 
interpolated from high resolution grid to sites. The trend 
of sunshine duration is highly and positively correlated 
with that of SH, with a correlation coefficient of 0.45, 
exceeding the 99% confidence level (Fig. 5a). In addition, 
the higher the altitude, the larger the positive correlation 
is, especially above 2500 m (Fig. 5d). The sunshine dura-
tion in the region above 2500 m mainly presents a decreas-
ing tendency (Fig. 5a). It lessens the amount of solar short-
wave radiation reaching earth’s surface. Because of the 
smaller specific heat capacity on the ground compared 
with air in general, the reduced downward solar short-
wave radiation eventually results in a distinct reduction in 
 Ts than  Ta, and even  Ts–Ta, and what’s more, diminution 
in SH.

A significant negative correlation exists between the trend 
of snow depth and SH, with correlation coefficient of -0.38 
(99% confidence level). And it is more striking in snow-
dominated higher elevation regions (Fig. 5d). There the 
snow depth of the surface has declined under the background 

Fig. 5  Elevation-dependent variation of trend in MAM for SH, a 
sunshine duration, snow depth and c NDVI of 140 stations during 
1980–2015. Altitudinal range is expressed in gray. d Correlation coef-
ficients between the SH trend and various factor trend (sunshine dura-

tion, snow depth, and NDVI) of every successive 41 stations accord-
ing to the low-to-high elevation order. Bars represent elevation and 
correlation coefficient magnitude is plotted on the y axis of right side. 
Black dashed line indicates the 95% significance level
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of global warming (Fig. 5b), which leads to the changes in 
surface absorption of solar radiation and the enhancement of 
warming over higher altitude. The increment in  Ts is greater 
than that in Ta, which leads to the augmentation of  Ts–Ta and 
even SH. The trend of  Ts–Ta shown in Fig. 3 increases with 
the altitude in higher-elevation regions (above 2500 m). In 
other words, the variation in SH contributed by the change 
of  Ts–Ta may be influenced primarily by the diminution in 
snow depth, especially at higher-altitude regions.

The correlation between the trend of NDVI and SH is 
small whether in lower or higher altitude areas (Fig. 5c). 
Accordingly, the portion of variation in SH dedicated by the 
change of  V0 is less related to the surface roughness. Then 
what has led to the weakened  V0 associated with SH in the 
higher altitude regions over the TP?

The U wind component and V wind component are cal-
culated using wind direction and wind velocity of surface 
meteorological observations. And their variation in trends 
are demonstrated in Fig. 6a, b. The U wind component 
makes a substantial contribution to the decreasing wind 
speed in the higher altitude areas (above 2000 m) over the 
TP (Fig. 6a). Additionally, the dwindling V wind component 
in the southeastern Tibetan Plateau has also contributed to 
the weakened wind speed in some extent (Fig. 6b). While the 
incremental wind speed sporadically distributed in the lower 
elevation areas on the eastern side of the TP is benefit from 
the combined action of U and V wind component.

To demonstrate the cause of attenuated wind over the TP, 
the ERA-Interim dataset is used in this part. On the average, 

there are northwesterly and southwesterly winds converging 
on the TP (Fig. 6c). Compared with the climate mean state, 
the spatial pattern of linear trend for wind indicates that 
wind speed, especially U wind component, decreases in the 
higher altitude areas. And simultaneously there are acceler-
ated easterly or southeasterly winds in the lower elevation 
regions on the eastern side of the TP (Fig. 6d). It is thus 
evident that the ERA-Interim fits well with observations.

The anomalous atmospheric circulation often tends to 
have a direct influence on the change of wind velocity. 
There is an abnormal convergence over the western pla-
teau, as shown in the blue rectangle of Fig. 6d, correspond-
ingly it exhibits easterly anomaly to the east of it. And it 
reduces the surface wind speed over the central and eastern 
TP, especially in the higher altitude areas. Consequently, 
the abnormal convergence mentioned above may be the 
immediate cause of the decreasing surface wind speed on 
the higher altitude areas. Then quasi-geostrophic ω equa-
tion (Eq. 1) is utilized in this section to diagnose the prin-
cipal cause of the upward motion associated with surface 
convergence mentioned above. The terms on the right side 
of the Eq. (1) express respectively the variation of vorticity 
advection with height (B), Laplace for temperature advec-
tion (C), and Laplace for diabatic heating (D). And the 
regression fields of the wind (vectors) at 10 m with respect 
to them are shown in Fig. 7. Compared to regression field 
based on temperature advection (Fig. 7c) and diabatic 
heating (Fig.  7d), the vector pattern regressed on the 
absolute vorticity advection (Fig. 7a) displays a stronger 

Fig. 6  Spatial distribution for the product of the linear trend and the 
symbol of climatological mean for a U wind component and b V 
wind component. The hollow circle represents negative value, and the 
solid circle represents positive value. The bigger the circle, the larger 

the absolute value is. c Climatological mean and d linear trend of 
the wind (vectors) at 10 m in MAM during 1980–2015 for the ERA-
Interim. Altitudinal ranges are expressed in colors
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resemblance with the field of linear trend for wind at 10 m 
(Fig. 6d). It makes clear that compared with the other two 
items, the increased vorticity advection with height is a 
more important contributor to the anomalous surface wind 
velocity reinforcing the convergence upward movement 
over the southwest TP (Fig. 7a). Among which, relative 
vorticity advection plays a pivotal role, and the correlation 
coefficient between the regression pattern (Fig. 7b) and the 
linear trend field (Fig. 6d) is 0.599 for U wind component 
and 0.747 for V wind component, both exceeding the 99% 
confidence level. This indicates that the abnormal wind 
speed associated with SH over the TP mainly is due to 
dynamic process. With regard to the interdecadal change 
of the wind speed closely related to the variation of SH 
over the TP, what may be responsible for it?

The Pacific Decadal Oscillation (PDO; Zhang et al. 1997; 
Mantua et al. 1997), or more generally the IPO (Power et al. 
1999; Deser et al. 2004), is a strong singal of climate vari-
ability on the interdecadal time scale. The PDO plays a sig-
nificant role in the trend variability of the East Asian sum-
mer monsoon and the dry-wet conditions of north China, 
via a phase transition of the PDO (Ma 2007; Li et al. 2010; 

(1)
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D

Qian and Zhou 2014). Then is the regional variation in sur-
face wind speed trend, which is closely associated with SH 
tendency, also influenced by the decadal variability in large-
scale circulation, PDO? An attempt to identify whether this 
is the case has been made in the following.

The spring mean PDO index from 1980 to 2015 (Fig. 8a), 
which is defined by the time series of the leading mode in 
empirical orthogonal function (EOF) analysis of monthly 
SST anomalies in the North Pacific Ocean (Zhang et al. 
1997; Mantua et al. 1997), is utilized to investigate the effect 
of PDO on SH. The PDO manifests as a low-frequency El 
Niño-like pattern of climate variability, with warming in 
the tropical central and eastern Pacific and cooling over the 
mid-latitude central and western Pacific during its positive 
phase (Fig. 8b), and vice versa. And it switched from a warm 
phase to a cold phase during recent decades (Chen et al. 
2008; Burgman et al. 2008; Feng et al. 2010; Meehl and 
Arblaster 2012; Dai 2013). There was anomalous upward 
vertical movement (Fig. 8c) associated with surface conver-
gence over the southwest of the TP (Fig. 8d) when the PDO 
switched from a warm phase to a cold phase. The regression 
pattern of the wind at 10 m with respect to the PDO multi-
plied by − 1 (Fig. 8d) seems to resemble very closely what 
the linear trend of surface wind displays (Fig. 6d). The cor-
relation coefficient between the regression field (Fig. 8d) and 
the linear trend pattern (Fig. 6d) is 0.632 for U wind compo-
nent and 0.724 for V wind component, both exceeding the 
99% confidence level. Meanwhile, the correlation coefficient 
between the SH trend and SH regression regressed on the 
normalized PDO, multiplied by − 1, is also significant at 
the 99% confidence level, with the correlation coefficient 

Fig. 7  Regression pattern of the wind(vectors) at 10 m regressed on 
a the variation of absolute vorticity advection with height, b the vari-
ation of relative vorticity advection with height, c Laplace for tem-
perature advection, and d diabatic heating integrated vertically from 

500 to 100  hPa. The correlation coefficient between the regression 
pattern and the linear trend field in Fig.  6d are shown in the upper 
right corner of each graph
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of 0.789. This indicates that the PDO may play a significant 
role in the interdecadal variation of SH over the TP via influ-
ence on the surface wind.

To investigate the mechanism for the influence of PDO, 
the wave activity flux 

⇀

W  (Formula 2) is calculated by the 
method developed by Takaya and Nakamura (2001). Read-
ers can refer to literature (Takaya and Nakamura 2001) for 
details:

Figure 9 presents regression field of geopotential height 
and stationary wave flux against the normalized PDO index 
(multiplied by − 1). During the negative PDO phases, with 
warming in northwestern Pacific, an alternating pattern of 
high and low geopotential height arcs propagates eastward 
from the northwestern Pacific. A positive anomaly centered 
over 50°N, 170°W is followed by a negative anomaly cen-
tered at Canada, alternated by a positive anomaly centered 
over the southern US. And then the wave train extends from 
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the North Atlantic to Europe, followed by the propagation 
northward and eastward from the Arabian Sea to the south-
west TP (Fig. 9a). Moreover, this wave pattern has the same 
phase in the middle and upper troposphere, and it indicates 
that the vertical structure of those waves is equivalent baro-
tropic (Fig. 9b). Diagnosis of the wave activity flux shows 
that the wave energy originates above the warm center of 
the northwestern Pacific and propagates eastward until 
reaching the southwest TP. And the influence of PDO on 
the atmospheric circulation over the TP is mainly located 
in the upper air, where there is a significant increase in geo-
potential height. In order to maintain mass continuous, the 
enhancement of divergence in the upper troposphere will 
result in compensated surface convergence and rising motion 
over southwest TP (Fig. 8c, d). And that leads to easterly 
anomaly to the east of the convergence, which consequently 
results in a decline in the surface wind speed associated with 
SH over the central and eastern TP, especially in the higher 
altitude areas.

The warming can cause divergence anomalies there in the 
upper troposphere. Therefore, the Rossby waves along the 
wave guide during the negative PDO phases may be resulted 
from the PDO-related divergence anomalies in the upper 
troposphere of the northwestern Pacific. To confirm this 

(a)

(c) (d)

(b)

Fig. 8  a The time series of spring-mean(MAM) PDO index. b The 
correlation coefficients between the PDO and SST in MAM during 
1980–2015. Regression patterns of c negative vertical velocity aver-
aged over (31°–32°N) and d the wind (vectors) at 10  m regressed 

on the normalized PDO index in MAM during 1980–2015. And the 
PDO index has been multiplied by − 1 to facilitate comparison. Dots 
in b and c indicate the areas where the values exceed the 95% signifi-
cance level
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mechanism, further studies using model to stimulate this 
steady downstream Rossby wave train are under way.

5  Summary and discussion

Our analyses reveal the elevation dependent variation in SH 
trend over the TP and its possible causes. The decreasing 
trend in SH over the TP above 2000 m altitude is amplified 
with elevation, especially in spring and summer, which is 
partially consistent with the conclusion mentioned in previ-
ous literature (Duan et al. 2011). Surface wind speed is a 
stable contributor to the variation in SH trend from lower 
to higher altitude areas. Meanwhile, the impact of the  Ts–Ta 
on elevation-dependence of SH trend is reinforced at higher-
altitude regions. The variation in SH trend contributed by the 
change of  Ts–Ta may be influenced primarily by the dimin-
ished sunshine duration and the lessened snow depth in the 
regions above 2500 m, with the latter being probably more 
important. As to the portion of variation in SH trend in rela-
tion to the change of the surface wind speed, it perhaps is 
mainly attributed to the dynamic process related to the PDO. 
The pattern regressed on the negative PDO index exhib-
its an anomalous wave train, which may develop locally 
in response to the PDO-associated warm anomalies of the 
sea surface temperature in northwestern Pacific. The wave 
energy originates above the warm center of the northwest-
ern Pacific and propagates eastward following the route of 

northwestern Pacific–Canada–southern United States–North 
Atlantic–Europe–Arabian sea–southwest TP. The direct 
effect of the wave on the regional variability in circulation 
of the TP is mainly in the upper troposphere. That leads to 
an enhancement in divergence of the upper troposphere and 
subsequently a boost in surface convergence and ascending 
motion over southwest TP. And even more important, there 
is easterly anomaly to the east of the convergence, which 
consequently results in a decline in the surface wind speed 
associated with SH over the TP, especially in the higher 
altitude areas.

Several issues remain unsolved. First, to confirm the 
mechanism for the generation of teleconnection wave train, 
further studies should be conducted in the future via numeri-
cal simulations. Second, most meteorological stations over 
the TP discussed in this article are concentrated over the 
central and eastern TP due to extremely sparse high-eleva-
tion (above 5000 m) observations. Analysis should be con-
ducted for data from satellite data, atmospheric reanalysis 
or model studies, but these sources have limitations in dura-
tion, spatial resolution and so on. So that makes it extremely 
difficult to determine the elevation dependency for climate 
variables at high altitude (Rangwala and Miller 2012; Pepin 
et al. 2015). Besides, we treat the drag coefficient for heat 
as a constant value in this study, but in fact it is altered rely-
ing on several factors, such as atmospheric stability (Guo 
et al. 2011; Yang et al. 2011b). Thus, there may exist some 

Fig. 9  a Regression field of 
MAM geopotential height and 
stationary wave flux at 200 hPa 
against the normalized PDO 
index (multiplied by − 1) in 
MAM during 1980–2015. b The 
same as a except for 500 hPa. 
Values exceeding the 95% 
significance level are presented 
in dots. The blue solid curve 
denotes the TP
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uncertainties in results for changes of surface heat flux at 
high altitude localities.
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