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thermodynamic component due to the increase in specific 
humidity and the dynamic component due to the changes in 
EASM circulation changes. The thermodynamic component 
is quite robust among the models, whereas the dynamic com-
ponent with the circulation changes contributes the major 
uncertainties of the EASM rainfall changes. Moreover, the 
apparent intermodel difference in the background circulation 
is another important source of the EASM rainfall changes. 
The results imply that the background and changes of the 
EASM circulation are the key factors for further narrowing 
the uncertainties of the projected EASM rainfall changes.

Keywords East Asian summer monsoon · Moisture 
budget · Rainfall · Global warming · Uncertainty

1 Introduction

East Asian summer monsoon (EASM) provides most of the 
annual mean rainfall for eastern and southern China, Korea 
and Japan (e.g., Endo and Kitoh 2016). Under the global 
warming, reliable projections of future changes in EASM 
rainfall are required. Most results of previous studies con-
firm that the EASM precipitation is likely to increase under 
global warming, although some uncertainties exist in the 
projections among present climate models (Kripalani et al. 
2007; Kusunoki and Arakawa 2012; Brown et al. 2013; Chen 
and Sun 2013; Kitoh et al. 2013; Sooraj et al. 2015).

Several studies have investigated various changing fac-
tors influencing the changes in Asian summer monsoon rain-
fall. Meehl and Washington (1993) suggested that doubled 
 CO2 concentration heats the land faster than the ocean and 
increases the evaporation which results in a greater South 
Asian monsoon precipitation. Some studies revealed the 
EASM rainfall will increase under global warming, and 

Abstract We investigated the changes in the East Asian 
summer monsoon (EASM) rainfall under global warming 
based on the historical and representative concentration 
pathway (RCP) 4.5 runs of 18 models from the fifth phase 
of the Coupled Model Intercomparison Project (CMIP5). 
Because the mechanism of rainfall changes under global 
warming studied in previous studies is widely based on the 
moisture budget decompositions (MBDs), we first evalu-
ated the applicability of three MBDs for the changes in the 
EASM rainfall, which are two complete MBDs in Chou et al. 
(J Clim 22(8):1982–2005; Chou et al., J Clim 22(8):1982–
2005, 2009) and Seager et al. (J Clim 23(17):4651–4668; 
Seager et al., J Clim 23(17):4651–4668, 2010), and the 
simplified MBD in Huang et al. (Nat Geosci 6(5):357–361; 
Huang et al., Nat Geosci 6(5):357–361, 2013). The results 
show that the simplified MBD in Huang et al. (Nat Geosci 
6(5):357–361, 2013) is applicable for the EASM rainfall 
changes, providing an efficient way to study the EASM rain-
fall changes, which is used in this study. The EASM rain-
fall changes can be well explained by two components: the 
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attributed it to the intensification of the northwest Pacific 
subtropical high and the inflow of moisture from the ocean 
(Kimoto 2005; Kripalani et al. 2007). With the latest genera-
tion of climate models, more studies consistently revealed 
the increase of EASM rainfall is induced by the intensified 
moisture convergence and increase of evaporation, which 
are associated with the enhanced water vapor content under 
global warming (Hsu et  al. 2012, 2013; Kusunoki and 
Arakawa 2012; Sooraj et al. 2015).

Moisture budget decomposition (MBD) is a widely used 
method to study the rainfall changes under global warming 
(Chou and Neelin 2004; Held and Soden 2006; Chou et al. 
2009; Seager et al. 2010, 2012; Chou and Lan 2012; Huang 
et al. 2013; Ma and Xie 2013; Endo and Kitoh 2014; Huang 
2014; Chen and Zhou 2015; Long and Xie 2015; Long et al. 
2016; Sooraj et al. 2016). Using MBDs we can decompose 
the total rainfall changes into various components, which 
are associated with different changing factors under global 
warming respectively. For example, the part of rainfall 
changes contributed by the atmospheric specific humidity 
changes is often called the thermodynamic component of 
rainfall changes, whereas that associated with the atmos-
pheric circulation changes is called the dynamic component. 
Using a MBD, Chou et al. (2009) investigated the rich-get-
richer mechanism and evaluated the thermodynamic and 
dynamic effects over convective and subsidence regions, and 
Seager et al. (2010) adopted a different approach to decom-
pose the moisture budget for evaluating the net flux of water 
substance. These MBDs are also used in the analyses of 
Asian monsoon rainfall changes (Endo and Kitoh 2014; Li 
et al. 2015; Sooraj et al. 2015, 2016).

The MBDs in Chou et al. (2009) and Seager et al. (2010) 
both are complete formulas of moisture budget. Huang 
et al. (2013) suggested a simplified MBD for tropical rain-
fall changes under global warming. The simplified MBD 
in Huang et al. (2013) provides a simple but efficient way 
to study the seasonal and spatial changes in tropical rain-
fall under global warming, and has been extended to study 
the changes in the interannual variability of tropical rainfall 
(Huang and Xie 2015; Huang 2016, 2017; Tedeschi and 
Collins 2016; Huang and Chen 2017) and to study the inter-
model uncertainty of tropical rainfall changes. (Long et al. 
2016). It is unclear whether the efficient MBD in Huang 
et al. (2013) is applicable for the EASM rainfall changes.

The present study introduces a new metric to examine 
the applicability of different MBDs based on the outputs 
of 18 models which include historical and representative 
concentration pathway (RCP) 4.5 runs. Our results show 
the simplified MBD in Huang et al. (2013) is also applicable 
for the EASM rainfall changes. Then, we apply the MBD in 
Huang et al. (2013) to study the sources of intermodel uncer-
tainty in EASM rainfall changes, which is an important but 
unclear aspect of the EASM rainfall changes. The models 

data and methods are presented in Sect. 2. Section 3 provides 
the results of applicability of three MBDs and the sources 
of uncertainty in EASM rainfall changes. Main conclusions 
are shown in Sect. 4.

2  Models and methods

2.1  Models

We use the monthly outputs from 18 CMIP5 models includ-
ing the historical and RCP 4.5 runs in this study. The mod-
els and their information are listed in Table 1 (Taylor et al. 
2012). The present-day climatology is defined as the long-
term mean during 1981–2000 in historical runs, the future 
climatology is defined as the mean during 2079–2098 in 
RCP 4.5 runs, and their difference (denoted as ∆) repre-
sents the change under global warming. The summer mean is 
defined as the average of June, July and August. The multi-
model ensemble (MME) is defined as the average of the 18 
models. All the model outputs are interpolated to 2.5° × 2.5° 
gird using bilinear interpolation.

2.2  Moisture budget decompositions

Three MBDs introduced in Chou et al. (2009), Seager et al. 
(2010) and Huang et al. (2013) have been widely used to 
study the rainfall changes under global warming in previous 
studies (Chou and Neelin 2004; Chou et al. 2009; Seager 
et al. 2010, 2012; Chou and Lan 2012; Huang et al. 2013; 
Ma and Xie 2013; Endo and Kitoh 2014; Huang 2014; 
Chen and Zhou 2015; Long and Xie 2015; Long et al. 2016; 
Sooraj et al. 2016). In Chou et al. (2009), the estimated rain-
fall change Δ̂PC can be written as: 

The estimated rainfall change Δ̂PS in Seager et al. (2010) 
is written as: 

In Eqs. (1) and (2), P, ρw, p, ω, q, u, and E are precipi-
tation, the density of water, pressure, pressure velocity, 
specific humidity, horizontal vector wind and evaporation, 
respectively. The subscript s and 20 denote surface values 
and twentieth-century (present-day climatology) values. 
The first three terms on the right-hand side of Eq. (1) are 
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thermodynamic component, dynamic component and change 
in horizontal moisture advection. The first two terms on the 
right-hand side of Eq. (2) are thermodynamic and dynamic 
components. The thermodynamic and dynamic components 
of Eq. (1) are not the same with that of Eq. (2). The Eq. (2) 
can be derived from Eq. (1) using the continuity equation 
and boundary conditions. The residuals in these two equa-
tions include mainly the transient eddy and nonlinear terms, 
which are negligible.

Huang et al. (2013) considered a two-layer simplification, 
the upper free atmosphere and the lower troposphere, and 
simplified the rainfall changes from Eq. (1) as follow: 

where �, q are the pressure velocity at 500-hPa pressure 
level and surface specific humidity, respectively. The sub-
script 20 in Eq. (3) will be omitted for conciseness in the 
following study. The simplification of Δ̂PH is efficient and 
applicable for studying the mechanism of the tropical rainfall 
changes (Huang et al. 2013; Huang 2014; Long et al. 2016.)

(3)Δ̂PH ∼ −
1

�wg

(
Δ� ⋅ q

20
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20
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)
,

2.3  Metric for the applicability of the moisture budget 
decompositions

As the Δ̂PH  in Huang et al. (2013) is simplified based on 
the understanding of tropical rainfall changes, the estimated 
Δ̂PH by the MBD of Eq. (3) could differs from the changes 
in rainfall changes. We call the consistency between the 
estimated Δ̂P by MBDs and ∆P as the applicability of the 
MBDs to the rainfall changes. The applicability of MBDs 
may depend on the locations and seasons. A metric, the local 
correlation coefficient between the Δ̂P by MBDs and ∆P, is 
defined as follows to evaluate their applicability in different 
locations and seasons. First, we have four grids around a 
given grid on the north, south, west and east, respectively. 
We select the given grid with the four grids around it in the 
18 CMIP5 models to get a 90-member series of one variable 
for the given grid. Finally, we can calculate the correlation 
coefficient between the 90-member series of ∆P and that of 
estimated rainfall changes by the MBD for the given grid. 
The local correlation coefficient is used to quantify the appli-
cability of one MBD on a given grid. The local correlation 
coefficient is calculated for the three MBDs, Δ̂PC, Δ̂PS, and 
Δ̂PH.

Table 1  List of the 18 CMIP5 models used in this study

Model Institute

BCC-CSM1.1 Beijing Climate Center, China Meteorological Administration
CanESM2 Canadian Centre for Climate Modelling and Analysis
CCSM4 National Center for Atmospheric Research
CNRM-CM5 Centre National de Recherches Meteorologiques / Centre Europeen de Recherche et Formation Avancees en Calcul 

Scientifique
CSIRO-Mk3.6.0 Commonwealth Scientific and Industrial Research Organisation in collaboration with the Queensland Climate Change 

Centre of Excellence
GFDL-CM3 Geophysical Fluid Dynamics Laboratory
GFDL-ESM2G Geophysical Fluid Dynamics Laboratory
GISS-E2-R NASA Goddard Institute for Space Studies
GISS-E2-H NASA Goddard Institute for Space Studies
HadGEM2-ES Met Office Hadley Centre
INM-CM4 Institute for Numerical Mathematics
IPSL-CM5A-LR Institut Pierre-Simon Laplace
IPSL-CM5A-MR Institut Pierre-Simon Laplace
MIROC5 Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and 

Japan Agency for Marine-Earth Science and Technology
MIROC-ESM Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute (The University of 

Tokyo), and National Institute for Environmental Studies
MIROC-ESM-CHEM Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute (The University of 

Tokyo), and National Institute for Environmental Studies
MRI-CGCM3 Meteorological Research Institute
NorESM1-M Norwegian Climate Centre
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2.4  Intermodel uncertainty

In this study, the uncorrected sample standard deviation 
(SD) of changes among the models is used to quantify the 
absolute intermodel spread of changes. Further, the signal-
to-noise ratio (SNR) to measure the robustness of the MME 
changes is defined as the ratio of the MME to the intermodel 
standard deviation of a variable, i.e., SNR = ∆/σ, where ∆ 
denotes the MME of changes and σ denotes the intermodel 
standard deviation of changes in the 18 models. The SNR 
is useful to quantify the robustness of changes (Long et al. 
2016; Huang 2017).

3  Results

3.1  Applicability of three moisture budget 
decompositions

Figure 1a, b show the annual-mean and summer-mean ∆P 
in the MME of 18 CMIP5 models under RCP 4.5 runs to 
compare with the estimated rainfall changes, Δ̂PC, Δ̂PS, and 
Δ̂PH. The annual-mean ∆P (Fig. 1a) is primitively positive 
over the equatorial Pacific Ocean with a hook-like pattern, 
and weakly positive over the northern Indian Ocean, India 
Peninsula, Southeast Asia and East Asia. During the summer 
(Fig. 1b), the pattern of summer-mean ∆P shifts northward 
along with the shift of climatological rainfall as a result of 
the wet-get-wetter mechanism (Huang et al. 2013).

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 1  a The annual-mean and b summer-mean rainfall change in 
the MME of the 18 CMIP5 models under the RCP 4.5 scenario. And 
annual-mean (c, e, g) and summer-mean (d, f, h) ∆P calculated by 
the right sides of the moisture budget decomposition Eqs.  (1)–(3), 
which are the method in Chou et al. (2009), Seager et al. (2010) and 

Huang et al. (2013) respectively. The pattern correlation coefficients 
between the direct rainfall changes (a, b) and the moisture budget cal-
culations based on Eqs.  (1)–(3) are shown at the top-right corner of 
the each panel (c–h)
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Figure 1c–h show the annual mean and summer mean 
of the three MBDs Δ̂PC, Δ̂PS, and Δ̂PH. In general, they all 
reproduce the primary characteristics of the spatial patterns 
of ∆P in the annual mean and boreal summer mean. The 
pattern correlation coefficients of the ∆P with the estimated 
rainfall changes Δ̂PC, Δ̂PS, and Δ̂PH , are all significant, 
which are showed at the top-right corner of each panel (c, d, 
e, f, g, h) in Fig. 1. The Δ̂PH (Fig. 1g,h) consists with the ∆P 
(Fig. 1a,b) best in them with the largest pattern correlation 
coefficient. The Δ̂PH  shows almost the same pattern with 
the Δ̂PC (Fig. 1c, d). For the Δ̂PS (Fig. 1e, f), however, there 
are two differences compared with ∆P, the Δ̂PS is underes-
timated over the ocean, and there are large biases of Δ̂PS in 
regions of topography such as Himalayas and Andes (Seager 

et al. 2010). The pattern correlation coefficient between the 
∆P and the Δ̂PS is lower than the other two MBDs.

To further illustrate the applicability of the Δ̂PC and Δ̂PH , 
we calculate the local correlation coefficient of Δ̂PC and 
Δ̂PH  with ∆P, respectively (Fig. 2). The local correlation 
coefficients are higher than 0.75 over the tropical ocean 
and decrease immediately when they get close to the land. 
High correlation coefficients are also found over the tropi-
cal land with the climatological precipitation greater than 
4 mm  day−1 in the annual mean and the summer mean. In 
boreal summer, the distribution of high climatological pre-
cipitation shift northward (Fig. 2b, d). As a result, the high 
correlation coefficients are also shift northward. Although 
the Δ̂PC is a complete formula and the Δ̂PH is simplified for 

(a) (b)

(c) (d)

Fig. 2  The defined 5-point local correlation coefficient (shaded) of 
the ∆P with the estimated Δ̂P

C
 (a, b) and Δ̂P

H
 (c, d), respectively, 

for the (a, c) annual mean and the (b, d) summer mean. Red curves 

are the 4 mm  day−1 contour of the climatological rainfall. Stippling 
indicates where the correlation coefficient passes the student t test at 
the 95% confidence level

Fig. 3  As in Fig. 2b, d, but 
especially for the EASM area. 
Red hatching denotes the 
summer-mean rainfall climatol-
ogy greater than 4 mm  day−1

(a) (b)
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the tropical rainfall, there is no apparent difference between 
their applicability from 60°S to 60°N (Fig. 2). Especially, 
the high applicability of Δ̂PH is also shift northward along 
with the high climatological rainfall to the mid-latitude of 
the northern hemisphere in boreal summer (Fig. 2d).

Figure 3 emphasizes the applicability of the two MBDs 
over the EASM region in boreal summer. The applicability 
of Δ̂PC and Δ̂PH is almost the same in this situation. Their 
local correlation coefficients with ∆P are larger than 0.75 
in the major EASM regions. This result shows the efficient 
MBD Δ̂PH is applicable to study the changes in EASM rain-
fall for the MME.

Because an important application of MBDs is to study 
the sources of the intermodel uncertainty of rainfall changes, 
we further illustrate the applicability of the Δ̂PH in the indi-
vidual models (Fig. 4). Consistent with previous studies 
(Kusunoki and Arakawa 2012; Chen and Sun 2013; Kitoh 
et al. 2013; Sooraj et al. 2015), the EASM rainfall changes 
show large intermodel uncertainty. However, the estimated 
Δ̂PH reproduce the EASM rainfall changes very well in each 
model. The pattern correlation coefficients between them 
in all models are significant. The high applicability of Δ̂PH 
in the MME and the individual models suggests that the 
efficient Δ̂PH in Huang et al. (2013) can also be applied to 
study the EASM rainfall changes.

3.2  The sources of the intermodel uncertainty 
in the EASM rainfall changes

The main sources of uncertainty in the EASM rainfall 
changes could include the model uncertainty, scenario 
uncertainty, and the internal variability of the climate system 
(Hawkins and Sutton 2009). Among the three sources, the 
model uncertainty will increase much larger than the internal 
variability in the projection for the end of twenty-first cen-
tury, when the only one scenario, for example the RCP 4.5 in 
the present study, is considered (Hawkins and Sutton 2009; 
Kent et al. 2015). To further narrow the intermodel uncer-
tainty, we apply the simplified MBD in Huang et al. (2013) 
to investigate the sources of the intermodel uncertainty in 
the EASM rainfall changes.

Figure 5 shows the thermodynamic and dynamic com-
ponents of ∆P decomposed by the MBD of Huang et al. 
(2013), whose sum is shown in Fig. 5c. The thermodynamic 
component (Fig. 5a) is positive over EASM region, but the 
sign of dynamic component (Fig. 5b) varies over EASM 
region. The magnitudes of the two components are close. 
Figure 6 displays the intermodel SD of the two components 
in the 18 models and the SNR of the two components in the 
MME. The SD of the thermodynamic component (Fig. 6a), 
almost less than 0.6, is much smaller than that of the 
dynamic component (Fig. 6b). The sign agreement test and 

the SNR of thermodynamic component (Fig. 6c) is almost 
larger than 1, showing that the thermodynamic component 
of ∆P is quite robust among the models. In contrast, the 
dynamic dominates the major uncertainty of ∆P.

To further investigate the contributions of each part in 
these two components, respectively, we separate their SD to 
the contribution of each component. The SD of the thermo-
dynamic component, ω∆q, is separated as �(Δq)|�̄�| and 
�(�)

|||Δq
|||, where the �(⋅)indicates the intermodel SD among 

the models and the overbar indicates MME of the models 
(Huang 2017). Similarly, the SD of the dynamic component, 
∆ωq, is separated as �(q)|||Δ�

||| and �(Δ𝜔)|q̄|. The SD due to 

Δω is largest (the color bar in Fig. 7d differs from the others) 
among the four terms, whereas the SD due to present-day 
surface specific humidity is smallest. For the two terms of 
the thermodynamic component, the SD due to Δq is smaller 
than that due to ω, indicating that the dominant uncertainty 
source of thermodynamic component is the historical ω 
although ω is not a projected variable.

The SD and SNR (Fig. 8) of the four variables reveals 
that the circulation changes Δω are the largest source of the 
model uncertainty in future precipitation changes, the q is 
negligible, Δq is consistently projected by the models, and 
the background of circulation ω is another important fac-
tor to the source of the intermodel uncertainty. This result 
indicates that improving the projection of EASM circulation 
changes is the most important way to improve the robustness 
of EASM rainfall changes, and using observed climatologi-
cal ω to constrain the thermodynamic part of EASM rainfall 
changes could be valuable to the projection of ΔP.

4  Conclusions and discussions

The EASM rainfall changes are an important issue of the 
climate changes for the EASM regions under global warm-
ing. The EASM rainfall changes projected by the CMIP5 
models show large intermodel uncertainty. What are the 
most important sources of the intermodel uncertainty of the 
EASM rainfall changes and how to reduce them are unclear. 
To study the EASM rainfall changes, the moisture budget 
decompositions were a widely used method. This study first 
investigated the applicability of three MBDs to the EASM 
rainfall changes, which including two complete MBDs of 
Chou et al. (2009) and Seager et al. (2010), and a simplified 
MBD of Huang et al. (2013). Then we applied the MBD of 
Huang et al. (2013) to investigate the sources of intermodel 
uncertainty of EASM rainfall changes under global warming 
projected by 18 CMIP5 models in the historical and RCP 
4.5 runs.
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Fig. 4  Summer-mean ∆P (shaded) and Δ̂P
H

 (contours; contour interval 1 mm  day−1 and negative contours dashed) of the 18 CMIP5 models. 
The pattern correlation coefficient between ∆P and Δ̂P

H
 is shown at the top-right corner of each panel

Author's personal copy



1370 S. Zhou et al.

1 3

(a) (b) (c)

Fig. 5  The summer-mean a thermodynamic (–�∆q) and b dynamic 
(–∆�q) components of in the estimated rainfall changes in Huang 
et al. (2013) and c their sum of them. Red curves in c are the contours 

of ∆P, in which contour interval is 0.2 mm  day−1 and negative con-
tours are dashed

Fig. 6  The a, b SD and c, d 
SNR of the thermodynamic 
(–�∆q) and dynamic (–∆�q) 
components. Contours in a, b 
are the MME changes in the 
thermodynamic and dynamic 
components (contour interval 
0.3 mm  day−1 and negative 
contours dashed). Stippling in c, 
d indicates that more than 70% 
models agree on the sign of the 
MME changes

(a) (b)

(c) (d)
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In general, the applicability of the MBD of Seager et al. 
(2010) is weaker than the MBDs of Seager et al. (2010) 
and Huang et al. (2013). The applicability of Δ̂PC is very 
close to that of Δ̂PH , although Δ̂PH  is simplified for the 
tropical rainfall. The applicability of the two MBDs are 
quite high over the tropical ocean and the regions with the 
climatological rainfall larger than 4 mm  day−1. Following 
the seasonal shift of the climatological rainfall, the appli-
cability of the two MBDs also show apparent seasonal 
shift to the summer hemisphere. For the EASM regions, 
the applicability of Δ̂PH , a simplified MBD, is similar to 
that of the complete MBD of Chou et al. (2009) in boreal 
summer. The simplified MBD, Δ̂PH , provides an efficient 
way to study the various aspects of the EASM rainfall 
changes.

In this study, we applied the MBD Δ̂PH  to investigate 
the source of the intermodel uncertainty in the EASM 
rainfall changes. The total EASM rainfall changes were 
decomposed into the thermodynamic and dynamic compo-
nent, which are induced by the increase in specific humid-
ity and the EASM circulation changes, respectively. By 

analyzing the intermodel standard deviation and signal-
to-noise ratio, we conclude that the EASM circulation 
changes is the largest source of the intermodel uncertainty 
consistent with the previous study (Kent et al. 2015), sug-
gesting that the projection of EASM circulation changes 
is the key to improve the projection of EASM rainfall 
changes. On the other hand, the background circulation is 
also an important source of the intermodel uncertainty of 
the EASM rainfall changes. As the background circulation 
of model can be compared with observations, this result 
implies that the observational constraint method is poten-
tial to correct the intermodel spread of the thermodynamic 
component in the EASM rainfall changes.

The present study attributes the key source of inter-
model uncertainty of the EASM rainfall changes to the 
EASM circulation change. An analysis for the seasonal 
tropical precipitation change also attributes the primary 
driver of intermodel uncertainty of the seasonal tropical 
∆P to the spatial shifts in tropical circulation (Kent et al. 
2015). However, the causes of the large uncertainty of the 
circulation changes is unclear yet in further attributions 

Fig. 7  The SD of the thermo-
dynamic (– ωΔq) components 
contributed by the SD of a Δq 
and b ω. The SD of the dynamic 
(− Δωq) components contrib-
uted by the SD of c q and d 
Δω. Note that the color bar in d 
differs from the others

(a) (b)

(c) (d)
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(Shepherd 2014). Under global warming, the EASM cir-
culation is likely to weaken and shift northward due to 
reduction in the meridional gradient of temperature over 
the Asian region (Ueda et al. 2006; Sooraj et al. 2015). 
The land–ocean contrast is an important mechanism for 
the monsoon circulation changes (Fasullo 2012). Kamae 
et al. (2014) reveals that the increasing land–ocean con-
trast in boreal summer over East Asia is explained by the 
 CO2-induced warming but not the sea surface temperature 
warming. However, the intermodel uncertainty of circula-
tion changes may be associated with the sea surface tem-
perature warming pattern over the tropical ocean (Ma and 
Xie 2013; Brown et al. 2016). He et al. (2014) suggest that 
the impact of the direct effect of radiative cooling on the 
circulation changes is larger than that of the sea surface 
temperature warming pattern over most regions, consist-
ent with the conclusion in Bony et al. (2013) and Kamae 
et al. (2014). Therefore, the uncertainty of the EASM 

circulation could involve multiply important sources, 
which could be the key point for the EASM changes under 
global warming in further research.
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