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is the key mechanism for maintaining the TIO warming. 
From the model perspective, during 1900–1940, the weak 
anti-symmetric atmospheric circulation with easterly (north-
westerly) anomalies north (south) of the equator helps to 
sustain the double-peak warming pattern. During 1965–
2005, the intensified anti-symmetric wind pattern is in favor 
of the non-uniform IOBM-like warming pattern.

Keywords Tropical Indian Ocean · Inhomogeneous 
warming · Double-peak warming pattern · Non-uniform 
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1 Introduction

About 84 % of the total heating of the Earth system has 
been absorbed by ocean (Levitus et al. 2005). Due to its 
thermal inertia, ocean retards the pace of the global warm-
ing by absorbing a majority of solar heating trapped by 
well-mixed Greenhouse Gas (GHG) forcing (Hegerl and 
Bindoff 2005). The signature of widespread warming in sea 
surface temperature (SST) emerges most clearly when con-
sidering the global ocean for much of the twentieth century 
based on a wide range of observations (Stocker et al. 2013). 
Much attention has been directed to each ocean basin for 
time spans of a decade or more. The Indian Ocean exhibits 
a robust basin-wide SST warming since the 1950s (Du and 
Xie 2008; Hoerling et al. 2004), amounting to the order of 
0.5 °C over the past 50 years, though the strong warming 
signal is not monotonic (Levitus et al. 2000).

Observations and numerical experiments have shown 
some distinctive spatial features in the Indian Ocean warm-
ing signal. Levitus et al. (2005) stressed that the Indian 
Ocean heat storage has displayed a pronounced increase 
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in the upper 700 m in the southern Indian Ocean, but kept 
roughly constant for the northern Indian Ocean over the 
past 5 decades, which is partly associated with a hemi-
spheric difference in the net surface heat flux caused by 
the buildup of aerosols over the northern Indian Ocean. 
Furthermore, by analyzing a new Indian Ocean Tempera-
ture Archive (IOTA), Alory et al. (2007) reported a particu-
larly significant warming signal in the western subtropical 
Indian Ocean from 40 to 50°S extending to 800 m; in con-
trast, a remarkable warming from 15°S to 5°N was con-
fined to above the 20 °C isotherm, along with a pronounced 
subsurface cooling in the depth of 100–200 m. Harrison 
and Carson (2007) pointed out that it was difficult to make 
an accurate determination of heat storage trend because of 
the sparse data coverage in the Indian Ocean, especially 
the southern Indian Ocean. It is indicated that the Tropi-
cal Indian Ocean (TIO) warming is mainly trapped in the 
top 125 m (Pierce et al. 2006). Climate models exhibit an 
appreciable warming of IOD-type pattern with warming in 
the western TIO and cooling in the southeastern TIO (Vec-
chi and Soden 2007; Zheng et al. 2010). The confidence 
level of the temporal and spatial characteristics in the TIO 
warming signal is low due to the lack of a multi-model 
ensemble mean approach.

The Indian Ocean warming has remote impacts on 
regional climate change. A large body of model simulations 
have demonstrated that the warming in the Indian Ocean is 
at least partly responsible for droughts over the Sahel and 
other parts of Africa (Bader and Latif 2003; Giannini et al. 
2003; Hoerling et al. 2006), the prolonged droughts during 
1998–2002 over North America, the Mediterranean, and 
the Middle East (Hoerling and Kumar 2003), and trends in 
the North Atlantic Oscillation and annular modes (Hoer-
ling et al. 2004; Lu et al. 2004). Additionally, the warm-
ing trend influences Australian precipitation (Ashok et al. 
2003), Indian monsoon circulation (Krishnan et al. 2006) 
and East Asian monsoon circulation (Li et al. 2010) as well 
as the extra-tropical remote forcing of ENSO (Lau et al. 
2006). Numerical model simulations are capable of sup-
porting observational evidence that the TIO warming is 
a key forcing for the northwestern Pacific and East Asian 
climate change in the 1970s (Xie et al. 2010b). Therefore, 
understanding the causes of the TIO warming is an essen-
tial scientific basis for future regional climate projection 
with improved skill and reduced uncertainty.

A wide variety of relevant mechanisms have been pro-
posed for the Indian Ocean warming. For one thing, many 
coupled ocean–atmosphere models have reproduced the 
warming in the TIO when forced by external forcing, 
especially by increased GHG and aerosol concentrations 
(Alory et al. 2007; Barnett et al. 2005; Hoerling et al. 2004; 
Pierce et al. 2006), but the warming signal has not been 
found when anthropogenic forcing is absent (Knutson et al. 

2006). Barnett et al. (2005) stated that the increased heat 
content of the northern Indian Ocean was mainly induced 
by the ocean temperature advection, whereas other parts 
of the Indian Ocean were subjected to increasing surface 
heat fluxes. Du and Xie (2008) further suggested that GHG 
forcing may have contributed significantly to the warming 
in the TIO. Moreover, the thermocline change induced by 
ocean waves (Li et al. 2003) and a deceleration of the wind-
driven Ekman pumping (Alory and Meyers 2009) are also 
regarded as the dominant causes. For another, internally-
generated variability of the climate system is a possible 
explanation. The 1976–1977 climate regime shift over the 
Pacific Ocean has promoted the basin-wide warming over 
the Indian Ocean (Terray and Dominiak 2005). Despite so 
many mechanisms posed, the pivotal physical mechanism 
responsible for the TIO warming, however, is still unclear.

The purpose of the present study is to identify the major 
spatio-temporal features of changes in the TIO SST and 
to investigate relevant mechanisms. Our study extends 10 
IPCC-AR4 models assessment (Alory et al. 2007). We not 
only evaluate the latest 16 CMIP5 models, but more impor-
tantly, shed light on the key role of intrinsic ocean–atmos-
phere interaction and ocean dynamics within the TIO in 
sustaining the inhomogeneous warming signal. We mainly 
put a spotlight on spatio-temporal pattern of the TIO warm-
ing and concerned formation mechanisms. Our study may 
therefore provide a possible explanation of physical pro-
cesses at work in the real ocean and responsible for the 
observed inhomogeneous warming in the TIO.

The rest of the paper is arranged as follows. Details on 
the observations, model simulations and diagnostic meth-
ods are described in Sect. 2. Major features and causes of 
the TIO warming based on observations and multi-model 
ensemble means are given in Sect. 3. The main conclusions 
and discussions on the findings from this study are pre-
sented in Sect. 4.

2  Model, observations and analysis methods

2.1  Model and experiments

This study adopts the total 180 simulations from the World 
Climate Research Program’s Coupled Model Intercom-
parison Project phase 5 (CMIP5) models organized by the 
U.S. Department of Energy’s Program for Climate Model 
Diagnosis and Intercomparison (PCMDI) in support of the 
Intergovernmental Panel on Climate Change Fifth Assess-
ment Report (IPCC-AR5), which include 71 historical, 45 
historicalGHG, 48 historicalNat and 16 piControl realiza-
tions (Table 1), respectively. Here we mainly analyze six 
sets of simulations (Taylor et al. 2012). The historical sim-
ulations (named as ALL) are forced by both anthropogenic 
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forcing (well-mixed GHGs and human-induced aerosols) 
and natural forcing (solar irradiance changes and volcanic 
aerosols). The historicalGHG (named as GHG) and histori-
calNat (named as NAT) simulations are consistent with the 
ALL except that they are forced by well-mixed greenhouse 
gases and natural forcing only, respectively. The piControl 
(named as INT) experiment is a long-term simulation with 
imposed non-evolving, pre-industrial conditions, includ-
ing prescribed atmospheric concentrations (all well-mixed 
gases and some short-lived species), non-evolving emis-
sions or concentrations (natural aerosols or their precur-
sors, some reactive species), and even unperturbed land 
use. Besides, according to Taylor et al. (2009), the differ-
ence between historical and historicalNat runs is defined as 
anthropogenic simulations (named as ANT). Likewise, the 
difference between anthropogenic and historicalGHG runs 
is characterized as aerosol simulations (named as AER). 
In this study, we apply outputs from a total of 16 differ-
ent CMIP5 models, including SST, surface heat flux (short-
wave and longwave radiation, latent heat flux and sensible 
heat flux), surface wind, near-surface wind speed, precipi-
tation and sea surface height.

2.2  Observational datasets

The observations used here include: (1) the monthly mean 
SST from the Hadley Centre Global Sea Ice and Sea Sur-
face Temperature (HadISST) analysis data for the period 

1900–2005 (Rayner et al. 2003), with a spatial resolution 
of 1° latitude × 1° longitude; (2) version 3b of the National 
Oceanic and Atmospheric Administration Extended Recon-
structed Sea Surface Temperature (ERSST_V3b) data for 
the period 1900–2005 in the form of monthly mean on a 
regular 2° × 2° latitude/longitude grid (Smith et al. 2008).

2.3  Analysis methods

2.3.1  Fingerprint analysis

The preindustrial control runs show long-term drifts. It 
is assumed that the drifts are largely a result of the mod-
els not being in equilibrium with the control run forcing. 
Therefore, we remove the drifts by subtracting the linear 
trends at each model grid point separately. To compute 
fingerprints from the ensemble means of the ALL, GHG, 
ANT, NAT and AER runs and to estimate the background 
noise of internally-generated variability from the INT, 
we first regrid all 16 model outputs to a common 5° × 5° 
latitude/longitude grid by a bilinear interpolation and then 
convert the monthly outputs to annual products for the 
period 1900–2005. Regridding to a comparatively coarse 
resolution grid can weaken the spatial dimensionality of the 
datasets used, which is conducive to the estimation of the 
empirical orthogonal functions (EOFs) in the fingerprint 
analysis (Santer et al. 2007). Considering that model incon-
sistencies may affect the results, the multi-model ensemble 

Table 1  Technical details of 16 CMIP5 Models used in this study

Official model acronyms, their institutes, Atmospheric General Circulation Model (AGCM) horizontal grid resolution, and the number of 
realizations from historical runs (NH), historicalGHG runs (NG), historicalNat runs (NN), and preindustrial control integrations (NC) are listed, 
respectively

No. Model Institute Atmospheric resolution (lat × lon) NH NG NN NC

1 bcc-csm1-1 BCC/China 64 × 128 3 1 1 1

2 BNU-ESM GCESS/China 64 × 128 1 1 1 1

3 CCSM4 NCAR/USA 192 × 288 6 3 4 1

4 CanESM2 CCCMA/Canada 64 × 128 5 5 5 1

5 CNRM-CM5 CNRM-CERFACS/France 128 × 256 10 6 6 1

6 CSIRO-Mk3-6-0 CSIRO-QCCCE/Australia 96 × 192 10 5 5 1

7 GFDL-CM3 NOAA GFDL/USA 90 × 144 5 3 3 1

8 GFDL-ESM2 M NOAA GFDL/USA 90 × 144 1 1 1 1

9 GISS-E2-H NASA GISS/USA 90 × 144 5 5 5 1

10 GISS-E2-R NASA GISS/USA 90 × 144 6 5 5 1

11 IPSL-CM5A-LR IPSL/France 96 × 96 6 3 3 1

12 IPSL-CM5A-MR IPSL/France 143 × 144 3 3 3 1

13 MIROC-ESM MIROC/Japan 64 × 128 3 1 3 1

14 MIROC-ESM-CHEM MIROC/Japan 64 × 128 1 1 1 1

15 MRI-CGCM3 MRI/Japan 160 × 320 3 1 1 1

16 NorESM1-M NCC/Norway 96 × 144 3 1 1 1

Total – – 71 45 48 16
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mean approach is used with the same weight for each 
model, despite of the number of ensemble realizations. The 
observational data is also transformed to the same 5° × 5° 
latitude/longitude target grid.

Let S(t, i, j) signify annual mean SST data at time t 
from the ith realization of the jth model’s runs. Data are 
expressed as anomalies relative to the period 1900–2005. 
The All ensemble averages (SALL(t)), GHG ensemble aver-
ages (SGHG(t)), ANT ensemble averages (SANT(t)), NAT 
ensemble averages (SNAT(t)) and AER (SAER(t)) ensemble 
averages are calculated by first averaging each model’s 
realizations (Table 1) and then averaging 16 different mod-
els. Finally, we calculate EOFs of the SALL(t), SGHG(t), 
SANT(t), SNAT(t) and SAER(t). The first EOF of each data set is 
simply defined as the fingerprint, for example, FALL, FGHG, 
FANT, FNAT and FAER, which accounts for a massive fraction 
of the overall variance.

To estimate the background noise of internally-gen-
erated variability, two different data sets are typically 
required for the optimal fingerprint method used here. One 
data set is used to calculate the optimal fingerprint, and the 
second is employed to estimate the statistical significance 
of the fingerprint. Here, we first separate SST anomaly data 
from individual control run into two equal parts and then 
concatenate the first and the second from 16 control runs 
(Table 2), respectively. Finally, we obtain two noise data 

sets. For example, for the 16 different model control runs, 
we calculate anomalies for individual control run relative 
to its overall time span and then concatenate these anoma-
lies to form two noise data sets C1(t) and C2(t). The index t 
indicates the concatenated time dimension. There are a total 
of time dimension of 4819 years of C1(t) and 4814 years of 
C2(t).

To assess the sensitivity of our results to the choice of 
fingerprint and noise, we further compute the signal-to-
noise ratio (S/N). We perform the rotation of the fingerprint 
in the subspace of the first m EOFs of C1(t) or C2(t), where 
m denotes the alleged “truncation dimension.” Here, we 
use the choice of m (=15) to rotate away from high noise 
directions and obtain the optimized fingerprint F∗. Fur-
thermore, to reduce the artificial skill, the same noise data 
C1(t) or C2(t) is never contemporaneously used to optimize 
the fingerprint and estimate the signal-free time series N(t) 
(Santer et al. 1995). Full details of the detection method are 
as follows.

We first calculate detection time series. Observational 
data O(t) are expressed as anomalies relative to climatolog-
ical mean for the entire period 1900–2005. Observed data 
O(t) and noise data set C1(t) or C2(t) are projected onto the 
optimized fingerprint F∗, yielding a statistical time series 
Z(t) and a signal-free time series N(t), respectively. Then 
Z(t) is fitted to the least-squares linear trends of increasing 
length L and compared with the standard error of the dis-
tribution of non-overlapping L length trends in N(t). Here, 
we assume a Gaussian distribution of trends in N(t) and use 
one-tailed Student t test. When the S/N exceeds above the 
95 % confidence level, the detection is stipulated to occur 
and the results are in this sense statistically significant.

2.3.2  Heat budget analysis

We assume that SST can represent the mixed-layer mean 
temperature and therefore we can employ mixed-layer heat 
budget analysis to diagnose the formation of SST warming 
pattern. When the ocean temperature is integrated from the 
surface to the bottom of the mixed layer, the SST tendency 
can be expressed as:

where T′ is SST change, C = copρoH is the heat capacity of 
the mixed layer, cp

o is the specific heat at constant pressure, 
ρo is the density of seawater, H signifies the depth of the 
mixed layer, Do denotes the ocean heat transport effect due 
to three-dimensional advection, mixing and even entrain-
ment, Qnet indicates the change in the net surface heat flux 
into the ocean.

Since our study is mainly concentrated on the long-term 
variability of SST warming pattern, the 11-year running 

(1)C
∂T ′

∂t
= Do + Qnet ,

Table 2  Salient features of preindustrial control integrations used in 
this study

CTL1, CTL2, and L denote (respectively) the first year, last year and 
length (years) of preindustrial control runs for calculating the sam-
pling distributions of internally-generated variability shown in Fig. 4. 
Note that the start date of individual control runs is random

No. Model CTL1 CTL2 L

1 bcc-csm1-1 1 500 500

2 BNU-ESM 1450 2008 559

3 CCSM4 250 1300 1051

4 CanESM2 2015 3010 996

5 CNRM-CM5 1850 2699 850

6 CSIRO-Mk3-6-0 1 500 500

7 GFDL-CM3 1 500 500

8 GFDL-ESM2 M 1 500 500

9 GISS-E2-H 2410 2949 540

10 GISS-E2-R 3981 4530 550

11 IPSL-CM5A-LR 1800 2799 1000

12 IPSL-CM5A-MR 1800 2099 300

13 MIROC-ESM 1800 2330 531

14 MIROC-ESM-CHEM 1846 2100 255

15 MRI-CGCM3 1851 2350 500

16 NorESM1-M 700 1200 501

Total – – 9633
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mean is applied to suppress inter-annual variability. Given 
the inter-decadal and even longer time scales, spatial vari-
ations in the net surface flux and the ocean transport effect 
are one order of magnitude larger compared with SST ten-
dency (Schneider and Fan 2012). Thus, Do counteracts the 
change in Qnet to the first order,

Considering the convenient diagnostic relationship used 
here, Do is simply inferred without definitely estimating all 
of the advection, mixing and entrainment terms. Although 
some important ocean processes such as the deep water 
ventilation are missing in Eq. (2), they do not seem domi-
nant in current study.

Surface heat flux is composed of four physical com-
ponents: shortwave radiation QS, longwave radiation QL , 
turbulent fluxes of sensible heat QH and latent heat QE . 
Surface latent heat flux (QE) is often taken as a mixture of 
ocean response (QE

o) and atmospheric forcing (QE
a), but not 

as a single dynamic quantity (Xie et al. 2010a). In general, 
QE can be decomposed into a Newtonian cooling effect 
(QE

o) and a residual that represents atmospheric forcing (QE
a) 

due mostly to the atmospheric adjustments in wind speed, 
relative humidity and stability effects, which may not be 
directly tied to, but be quite influential in the formation of 
SST warming pattern. The first term can be casted as:

where Q̄E denotes the climatological latent heat flux and α 
indicates the coefficient. The second term is calculated as:

Likewise, the wind speed effect (QE
w) can be obtained,

where W is surface wind speed, W′ is surface wind speed 
change and W̄ is the climatological surface wind speed.

In conclusion, SST warming pattern formation can be 
quantified by the following equation,

The variations in SST warming are mainly attribut-
able to ocean circulation variation (Do), and atmos-
pheric processes via radiative and turbulent fluxes 
(Qa = QS + QL − QH − QE). Note that sensible heat flux 
(QH = −cpρaCHWS, cp is specific heat at constant pressure, 
ρa is surface air density, CH is the transfer coefficient, W is 
surface wind speed, S = Ta − T is surface stability param-
eter, Ta and T are total SST and surface air temperature 
at 2 m in kelvin) has been treated as a key component of 
atmospheric forcing (Qa). Moreover, the SST dependency 

(2)0 = Do + Qnet .

(3)Qo
E =

∂QE

∂T
T ′

= αQ̄ET
′
,

(4)Qa
E = QE − Qo

E .

(5)Qw
E =

∂QE

∂W
W ′

=
Q̄EW

′

W̄
.

(6)0 = Do + Qa − αQ̄ET
′
.

of surface evaporation may be regarded as a dominant 
damping to well balance forcing terms. The Newton cooling 
coefficient (αQ̄E) acts as the ocean’s ability of limiting the 
variations in SST warming via evaporation. Also, according 
to the Clausius–Clapeyron equation, the coefficient α can be 
calculated as LR−1

v T−2 ∼=  0.06 K−1. As noted in Xie et al. 
(2010a), α approximately equals to 0.06 K−1.

3  Results

First, the temporal features of SST warming in the TIO are 
investigated. Then, we utilize an optimal detection method 
to optimize the fingerprint and further enhance the detecta-
bility of the fingerprint in observations (Gillett et al. 2002). 
The spatial characteristics of the TIO warming pattern are 
also examined. Finally, the relevant physical mechanisms 
responsible for the TIO warming pattern are given in 
details.

3.1  Temporal behavior of the TIO warming

Figure 1 illustrates the time evolutions of the TIO 
(20°S–20°N, 40°E–120°E) annual mean SST anomalies 
relative to the climatological mean over the entire period 
of 1900–2005 derived from observations and the ALL. 
For observations, HadISST and ERSST_V3b show a strik-
ing similarity in the basin-scale warming signal during 
1900–2005, albeit some slight differences can also be found 
between two datasets, which are largely due to diverse reso-
lutions and homogeneous methods in producing the data 
archives. It is clear that both the observations and ALL 
exhibit a rapid and non-monotonic warming since 1900, and 
the warming trend is approximately larger by a factor of 2 
during 1965–2005 compared to the trend during 1900–1940. 
Here, the warming trend in the ALL is somewhat larger than 
that in observations. We suspect the underlying reason is 
that multi-model ensemble means of historical simulations 
reduce substantially intrinsic variability, whereas the obser-
vations still contain internally-generated variability. Besides, 
an inconsistency can be found between the observations and 
ALL during 1941–1964 (Fig. 1), which may be associated 
with multiple reasons (observational uncertainty and model 
internal variability, etc.). Therefore, for simplicity, we pri-
marily focus on linear trend in variables during 1900–1940 
and 1965–2005 in the following analyses.

To evaluate the performance of 16 CMIP5 models in 
simulating TIO SST non-uniform warming signal, we first 
compare multi-model ensemble means with the obser-
vations. Time series of annual-mean basin-scale SST 
anomalies in the TIO are shown in Fig. 2. It can be seen 
that the ALL, GHG and ANT capture the primary fea-
tures of the TIO non-uniform warming observed since 
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1900. Specifically, both the ALL and observations exhibit 
a similar but not monotonous rate of warming during 
1900–1940 and 1965–2005. The observed warming rate 
of about 0.06 K/decade during 1900–1940 is reproduced 
by the GHG, although the warming trend is overestimated 
since 1965. The ANT, however, underestimates the basin-
scale warming trend. Additionally, the NAT displays an 
appreciable warming during 1900–1940 while such feature 
does not occur after 1965. The AER shows a significant 
cooling since 1900. In short, above results indicate that 
the observed warming is comparable with the forcing and 
response hypotheses embodied by the forced runs from the 
available 16 CMIP5 models ensemble.

For consistency when comparing forced responses and 
internal variability, we limit the length of piControl simu-
lations examined to that of the shortest piControl runs, 
255 years and then calculate the multi-model ensemble 
means. We further quantify the relative contributions of 
each forced run and internally-generated variability to 
the basin-scale warming in the TIO during 1900–1940 
and 1965–2005 (Fig. 3). During 1900–1940, the observed 
warming trends of 0.061 ± 0.01 (0.069 ± 0.01) K/dec-
ade for HadISST (ERSST_V3b) are well captured by 
the ALL of 0.078 ± 0.005 K/decade (Fig. 3a). Under the 
ANT and NAT, the warming trend separately amounts 
to 0.037 ± 0.002 and 0.042 ± 0.005 K/decade, which 

Fig. 1  Time series of annual 
mean SST anomalies over the 
TIO (20°S–20°N, 40°E–120°E) 
separately from the observations 
and ALL. The two numbers 
of each figure (respectively) 
indicate linear trend values plus/
minus 95 % confidence limits 
according to the one-tailed 
Student t test during 1900–1940 
and 1965–2005. The black 
dashed lines are shown to mark 
the transformation around 1940 
and 1965. Units: K
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respectively account for approximately 50 % of the warm-
ing of the ALL. The GHG of 0.049 ± 0.002 K/decade 
implies that about one-fourth of the GHG-caused warm-
ing is offset by the AER of −0.012 ± 0.002 K/decade. The 
INT likely contributes to −0.29 to 0.03 K/decade. Above 
results reveal that the combined effect of GHGs and natural 
forcing may have contributed significantly to the observed 
warming during 1900–1940. During 1965–2005, the ALL 
of 0.135 ± 0.008 K/decade nearly equals to the warming 
trends of 0.131 ± 0.008 (0.124 ± 0.006) K/decade for 
HadISST (ERSST_V3b) (Fig. 3b). It is noteworthy that 
the ANT of 0.122 ± 0.005 K/decade contributes substan-
tial warming trend of the ALL. Given the error bar, there 
is no significant warming trend in the NAT. The cooling 
trend induced by the AER is −0.04 ± 0.003 K/decade, 
offsetting roughly one-fourth of GHG-caused warming of 
0.165 ± 0.003 K/decade. As for the internally-generated 
variability, it makes little contribution to the observed 
warming during 1965–2005. Therefore, we conclude that 
anthropogenic forcing has played a dominant role in the 
robust warming observed during 1965–2005. It is however 
noted that the ALL overestimates the observed 1900–1940 
and 1965–2005 trends by at least 0.01 K/decade. This could 
mean that, besides external forcing, internal variability may 
also have an important role in contributing to the observed 
SST warming trends in the TIO (Roxy et al. 2014).

The general temporal features shown in multi-model 
ensemble means of Fig. 3 are also presented in many indi-
vidual models (Fig. 4). Comparison of the multi-model 
ensemble means with individual models reveals that 
inter-models variations do not distort the consistency of 
the results during 1900–1940 (Fig. 4a–e) and 1965–2005 
(Fig. 4g–k). Meanwhile, the warming trends of individual 
models indicate a relatively good agreement with observa-
tions in the overall temporal structure of the TIO warm-
ing. On the other hand, internal variability is likely to play 
a larger role in the observed SST warming during 1900–
1940: approximately 29 % (115 of 400) of the unforced 
trends exceed the observed trends (Fig. 4f), compared 
to about 6 % (25 of 400) exceeding observations during 
1965–2005 (Fig. 4l), as noted in Fig. 3. These results give 
us some confidence in the ability of 16 CMIP5 models to 
simulate the basin-scale characteristics of multi-decadal 
variability in the TIO SST.

3.2  Spatial pattern of the TIO warming

In this section, we use multi-model ensemble means to 
evaluate the TIO response to an imposed forcing change 
(fingerprint) and the background noise of natural climate 
variability (Barnett et al. 2005). A standard optimal detec-
tion method, as applied by Gillett et al. (2002), is utilized to 

Fig. 2  Time series of the TIO annual mean SST anomalies for Had-
ISST, ERSST_V3b, ALL, GHG, ANT, NAT and AER. Black and 
magenta curves denote HadISST and ERSST_V3b, respectively. Red 
curve is ensemble means of the ALL runs from 16 CMIP5 models. 
Similarly, blue curve is the GHG. Cyan curve is the ANT. Green 
curve is the NAT and salmon curve is the AER. The different models 
used here are weighted equally for ensemble means, despite the num-
ber of ensemble members they have. The shaded regions indicate the 
5–95 % range of the distribution of SST anomalies obtained from the 
16 CMIP5 models for the ALL, GHG, ANT, NAT and AER, respec-
tively, which reflect uncertainty. Units: K

(a)

(b)

Fig. 3  The linear trends in the TIO basin-mean SST anomalies for 
HadI (HadISST), ERSST (ERSST_V3b), ALL, GHG, ANT, NAT, 
and AER during a 1900–1940 and b 1965–2005. The whiskers 
exhibit the linear trend values plus/minus 95 % confidence inter-
vals according to the one-tailed Student t test. The INT represents 
assessed likely range of internal variability taken from the estimate 
of the 5th to 95th percentiles of non-overlapping 10-year linear trends 
of the first 255 years of multi-model ensemble means of preindustrial 
control runs. Units: K/decade
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estimate the fingerprint and noise modes by pooling infor-
mation from multi-model ensemble means. This method 
has been extensively employed in studies of the height of 
the tropopause (Santer et al. 2004), near-surface tempera-
ture trend caused by GHG (Hegerl et al. 1996), surface 
temperature (Karoly and Wu 2005; Knutson et al. 1999; 
Stott 2003) and surface air temperature (Wu and Karoly 
2007). Here, considering the limited length of observed 
instrumental record, we employ spatial optimization only.

We obtain the fingerprints estimated separately from the 
ALL, GHG, ANT, NAT and AER. The fingerprints are the 
first EOFs of the TIO SST anomalies during 1900–1940 
(Fig. 5) and 1965–2005 (Fig. 6). During 1900–1940, the 
observations show large anomalous warming trend over 
most parts of the northwestern or western TIO and rela-
tively weak warming in the southeastern TIO (Fig. 5a and 
b). Very similar SST distributions are seen in the GHG and 
NAT fingerprints (Fig. 5d and f). Particularly, both finger-
prints explain a substantial fraction of the overall variance 
(about 96.2 and 94.3 %, respectively). The spatial pattern 
correlation coefficients between the observed warming 

trends and the GHG, NAT fingerprints are also very high 
(all exceeding 0.82; Fig. 5d and f). The spatial pattern is 
commonly referred to as a double-peak warming pattern. 
The ALL fingerprint primarily reflects a basin-scale warm-
ing (Fig. 5c) with explained variance of about 98.7 % and 
high spatial pattern correlation coefficients of exceeding 
0.84, which is much stronger than the ANT fingerprint with 
slight warming (Fig. 5e). By comparison, the AER finger-
print shows general cooling trend with smaller explained 
variances and negative spatial pattern correlation coeffi-
cients of less than −0.67 (Fig. 5g). The leading noise mode 
primarily captures the cooling effect of SST variability over 
the TIO with negative spatial pattern correlation (Fig. 5h). 
We should note, however, that there exist some differences 
between the observed and the ALL, which may be due to 
the deficiencies of CMIP5 models (intrinsic variability sim-
ulation and responses to external forcing), the specified his-
torical externally-forced factors and observational uncer-
tainty. A certain fraction of area with inconsistent results 
are expected to occur (Knutson et al. 1999). Therefore, to a 
certain extent, we can still interpret the observed warming 

(a)

(d)

(g)

(j)

(b)

(e)

(h)

(k)

(c)

(f)

(i)

(l)

Fig. 4  Comparison of the observed (H-HadISST and E-ERSST_
V3b) with modeled trends from ALL (a), GHG (b), ANT (c), NAT 
(d), AER (e) during 1900–1940 and ALL (g), GHG (h), ANT (i), 
NAT (j), AER (k) during 1965–2005 from 16 CMIP5 models as 
shown in Table 1 and the multi-model ensemble means (number 17). 

The sample distributions of non-overlapping 10-year linear trends 
from the first 255 years of each model’s piControl run as shown 
in Table 2 are calculated (f and l). f Black and red lines denote the 
observed trends during 1900–1940 for HadISST and ERSST_V3b. l 
Same as f but for 1965–2005. Units: K/decade
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trends as attributable to GHGs and natural forcing. Our 
study provides compelling evidence that the double-peak 
warming pattern can be well explained by a combination of 
warming largely due to increase in well-mixed greenhouse 
gases, and natural forcing, with some cooling at least in 
part due to aerosols, and substantial, but not implausible, 
contribution from internally-generated variability. 

During 1965–2005, the observed warming trends 
(Fig. 6a and b) and the ANT fingerprint (Fig. 6e) exhibit 
a robust basin-scale warming pattern of the same polar-
ity with a pronounced geographic distribution (termed as 
a non-uniform IOBM-like warming pattern) covering the 
whole TIO basin (Du et al. 2013). The ANT fingerprint 
explains a considerable fraction of the overall variance 
(98.6 %) with very high pattern correlation coefficients of 
exceeding 0.94. It corresponds more closely to the ALL 
fingerprint (Fig. 6c) than to the GHG fingerprint (Fig. 6d). 
The NAT fingerprint shows anomalous warming with a 
stronger magnitude in the northern TIO (Fig. 6f). The AER 
fingerprint (Fig. 6g) exhibits stronger cooling over the 

northern TIO than that over the southern TIO, to a large 
extent, because of stronger aerosol (Barnett et al. 2005) and 
the rapid growth of aerosol concentrations after the 1950s 
(Xie et al. 2013). It explains a substantial fraction of the 
overall variance (approximately 87.8 %) but with smaller 
negative correlation coefficients (less than −0.84; Fig. 6g). 
Additionally, the noise has relatively low loadings but with 
high spatial correlation coefficients (Fig. 6h). These results 
lend credence to the view that the non-uniform IOBM-like 
warming pattern is largely caused by changes in anthropo-
genic forcing.

To explore the sensitivity of the results obtained from 
the optimal detection method, we show the estimations of 
signal-to-noise ratio (S/N) during 1900–1940 and 1965–
2005 in Fig. 7. Despite the short model simulation length 
during 1900–1940, the GHG and NAT signals are consist-
ently detectable and both show a smooth increase (Fig. 7a). 
As the trend interval L increases, there occurs a pronounced 
decrease in the standard error of the sampling distributions 
of trends in noise (Fig. 7c). The remarkable increase in the 

Fig. 5  Observed and simulated 
spatial patterns of variations in 
the TIO SST anomalies. The 
observed trends during 1900–
1940 are shown in a (HadISST) 
and b (ERSST_V3b). The 
dotted areas are stipulated to 
be statistically significant at 
the 95 % confidence level. The 
fingerprints for ALL (c), GHG 
(d), ANT (e), NAT (f) and AER 
(g) are shown. Also shown is 
the leading noise mode of the 
concatenated INT (C1(t)) runs 
(h). The numbers at the top-
right above each panel indicate 
spatial pattern correlation 
coefficients between HadISST 
and ERSST_V3b (a and b), the 
fingerprints and the observed 
trends (c–h). Percentage 
explains variance contribution 
for each fingerprint and noise 
mode

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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S/N plotted in Fig. 7e arises mainly from the decrease in 
the standard error of the noise with increasing trend length. 
During 1965–2005, there is a gradual increase in the ANT 
signal with the trend interval L increasing (Fig. 7b). The 
rapid decrease in the standard error of the noise (Fig. 7d) 
may be due not only to an obvious decrease in noise ampli-
tude with longer trend interval L, but also largely to dissim-
ilarity between the ANT fingerprint pattern and the pattern 
of noise in C1(t), which results in a progressive growth in 
S/N (Fig. 7f). To some extent, these underscore the cred-
ibility of our results in Figs. 5 and 6.

3.3  Physical mechanisms for the double‑peak 
and non‑uniform IOBM‑like warming pattern

We further determine the relevant causes of the forma-
tion of the double-peak and inhomogeneous IOBM-like 
warming pattern in the TIO based on the mixed-layer heat 
budget analysis. Here, we primarily focus on evaluating 
the response to the all-forcing from 16 CMIP5 models 

ensemble means, which has important implications for 
detecting the key physical mechanisms responsible for the 
TIO inhomogeneous warming patterns. In consideration 
of the credibility and physical consistency between the 
observed and model simulations, we also examine the role 
of the combined effects of the GHG and the NAT during 
1900–1940, and the ANT during 1965–2005 in forming the 
TIO warming patterns.

Atmospheric and oceanic processes in the ALL are 
shown in Fig. 8. During 1900–1940, atmospheric pro-
cesses via radiative and turbulent fluxes (Qa) present two 
maximum centers: one appears in most parts of the north-
western basin and the other is located in the southeastern 
basin (Fig. 8a), resembling the double-peak structure in 
Fig. 5a. Ocean heat transport effect (Qo) produces cooling 
trend off Java and Sumatra and over the northwestern TIO 
(Fig. 8c). Note that the sum of atmospheric and oceanic 
processes (Do + Qa) reveals a double-peak structure, with 
conspicuous warming located in the northwestern basin 
and stronger warming along 10°S–20°S (Fig. 8e), which 

Fig. 6  Same as in Fig. 5 but 
for 1965–2005. Note that h 
the leading noise mode of the 
concatenated INT (C2(t)) is 
calculated

(a) (b)

(c) (d)

(g) (h)

(e) (f)
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largely contributes to the formation of the double-peak 
warming pattern. In addition, spatial pattern correlation 
coefficient between the sum of atmospheric processes and 
ocean heat transport (Do + Qa), and the observed warm-
ing trend amounts to 0.84 (0.82) for HadISST (ERSST_
V3b). The distribution of the Newtonian cooling coeffi-
cient αQ̄E affects the variations in SST warming (Fig. 8g) 
and hence the variations in climatological latent heat flux 
(Q̄E) is very important for the double-peak pattern forma-
tion, as indicated in Eq. (6). It is clear that the combined 
effects of atmospheric and oceanic processes play a key 
role in the formation of the double-peak warming pattern. 
During 1965–2005, atmospheric processes (Qa) almost 
warm the entire basin but with remarkable sub-basin vari-
ations (Fig. 8b), which are in favor of the formation of the 

non-uniform IOBM-like warming pattern, though with pro-
nounced cooling induced by ocean heat transport effect in 
the eastern TIO (Fig. 8d). The sub-basin variations in Qa 
may be largely due to the buildup of aerosols in the north-
ern TIO compared to that in the southern TIO (Barnett 
et al. 2005), which weakens the SST warming signal, as 
shown in Fig. 6g. The sum of atmospheric processes and 
ocean circulation change (Do + Qa) displays the basin-wide 
warming effect (Fig. 8f), similar to the climatological latent 
heat flux (Fig. 8h), which is favorable for the inhomogene-
ous IOBM-like warming pattern formation. Furthermore, 
spatial pattern correlation correlations between the sum 
of atmospheric processes and ocean circulation change, 
and the observed trends (HadISST and ERSST_V3b) are 
approximately 0.92 and 0.96. These results imply that we 

(a) (b)

(c) (d)

(e) (f)

Fig. 7  The optimized GHG and NAT fingerprints (also termed as sig-
nal (a) and the noise (c) component of the signal-to-noise ratio (S/N, 
e) used for estimating the sensitivity of the results during 1900–1940 
are fully illustrated. The ANT signal (b) and the noise (d) compo-
nent of the S/N (f) during 1965–2005 are also clearly listed. Note that 

two observational data sets are projected onto the optimized finger-
prints to obtain two signals, for example the cyan and purple lines for 
HadISST and ERSST (b). The horizontal red lines (e and f) are the 
stipulated 5 % significance thresholds for a one-tailed Student t test, 
assuming a Gaussian distribution of noise trends
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can interpret the double-peak and non-uniform IOBM-like 
pattern as attributable, at least in a large part, to the sum of 
atmospheric processes and ocean circulation change.

Besides, we also examine four physical components 
of atmospheric processes (Qa), such as surface shortwave 
radiation (QS), surface longwave radiation (QL), sensible 
heat flux (QH), and latent heat flux from atmospheric forc-
ing (QE

a). Surface shortwave radiation (QS) shows weak 
warming in the whole basin except some patched areas 
where slight cooling occurs during 1900–1940 (Fig. 9a). 
In contrast, there is a widespread cooling in the almost 
entire basin except some warming patched areas during 
1965–2005 (Fig. 9b) owing primarily to intensified water 
vapor absorption caused by the lower troposphere moisten-
ing (Trenberth and Fasullo 2009). The increase in convec-
tive clouds due chiefly to increased SST in the TIO reduces 
shortwave radiation even more. Downward longwave 

radiation nearly warms all the basin but with a stronger 
magnitude during 1900–1940 (Fig. 9c) in contrast to the 
warming during 1965–2005 (Fig. 9d) because of increased 
GHG forcing and enhanced water vapor feedback (Du and 
Xie 2008). Sensible heat flux also warms the entire basin, 
albeit with a reduced magnitude (Fig. 9e and f). It should 
be noted that latent heat fluxes from atmospheric forcing 
part (QE

a) with a larger magnitude (Fig. 9g and h) show sim-
ilar spatial patterns to the sum of atmospheric and oceanic 
processes, which indicates that QE

a can be considered as the 
dominant mechanism for the TIO warming and can imprint 
strongly on the SST warming. Our study confirms that QE

a 
plays a key role in causing the double-peak and inhomoge-
neous IOBM-like warming pattern.

The wind effect on latent heat flux from atmospheric 
forcing part features two peaks located in the northwest-
ern basin and along 0°–15°S (Fig. 10a) due to reduced 

Fig. 8  The linear trend of a 
atmospheric processes via radia-
tive and turbulent fluxes (Qa), c 
ocean heat transport effect (Do), 
e the sum of atmospheric and 
oceanic processes (Qa + Do) 
from ensemble means of the 
all-forcing runs from 16 CMIP5 
models during 1900–1940 in the 
TIO. b, d and f are the same as 
a, c and e but for 1965–2005, 
respectively. g The Newtonian 
cooling coefficient (αQ̄E, units: 
Wm−2K−1) is the same as h. 
Our convention for warm-
ing ocean is positive. Units: 
Wm−2/10 yr

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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climatological wind speed (Fig. 11a), nearly coincident 
with the double-peak warming pattern. The ALL cap-
tures the significant SST warming signal in observations, 
simultaneously with the weak anti-symmetric atmospheric 
circulation (Fig. 10c). Specifically, consistent with the 
robust SST warming (Fig. 10c) and intensified atmos-
pheric convection (Fig. 10g), anomalous surface winds 
are characterized by an anti-symmetric wind pattern, with 
anomalous easterly north and northwesterly south of the 
equator. The northwesterly anomalies help to suppress the 
prevailing southeasterly over the southeastern TIO and 
the easterly anomalies reduce the climatological westerly 
over the northern TIO (Fig. 11a), which act to sustain the 
SST warming. Compared to climatological sea surface 
height (Fig. 11a), sea surface height anomaly exhibits two 
peaks located in the northwestern TIO and along 10°S, 
which helps to enhance thermocline feedback to reduce 
upwelling and raise SST in the south TIO (Huang and 
Kinter 2002). As identified in coupled general circulation 

model simulations (Du et al. 2009), the anti-symmetric 
atmospheric circulation is initiated by the down-welling 
Rossby wave-induced SST warming in the south TIO. The 
down-welling Rossby wave primarily reduces upwelling 
(Xie et al. 2002) and further anchors the anti-symmetric 
atmospheric circulation, suggestive of their mutual interac-
tion. This conclusion needs to be further verified in mod-
els on multi-decadal time scales. These results suggest that 
the anti-symmetric wind anomalies maintain the warming 
over the northwestern and southeastern TIO. Our study also 
highlights that, to a certain extent, internal ocean–atmos-
phere interaction within the TIO is of vital importance to 
sustain the double-peak warming pattern.

During 1965–2005, the wind effect on latent heat flux 
from atmospheric forcing part almost warms the entire 
basin but with stronger magnitude (Fig. 10b) compared to 
that during 1900–1940 (Fig. 10a), which may be associ-
ated with reduced climatological surface wind (Fig. 11b). 
The non-uniform basin-scale warming is well reproduced 

Fig. 9  The linear trend of 
a surface shortwave radia-
tion (QS), c surface longwave 
radiation (QL), e sensible heat 
flux (QH), g latent heat flux 
from atmospheric forcing (QE

a) 
from ensemble means of the 
all-forcing runs from 16 CMIP5 
models during 1900–1940 in 
the TIO. b, d, f and h are the 
same as (a), c, e and g but for 
1965–2005, respectively. Our 
convention for warming ocean 
is positive. Units: Wm−2/10 yr

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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by the ALL (Fig. 10d) with intensified anti-symmetric wind 
anomalies. The anti-symmetric wind pattern features rein-
forced easterly occupying most parts of the northern TIO 

and enhanced northwesterly extending over the south-
ern TIO. Associated with the C-shaped wind pattern, the 
easterly anomalies weaken climatological westerly over 

Fig. 10  The linear trend of 
a wind effect on latent heat 
flux from atmospheric forcing 
part (QE

W, colors, Wm−2/10 yr) 
and surface wind (vector, 
ms−1/10 yr), c SST (colors, 
K/10 yr) and surface wind (vec-
tor, ms−1/10 yr), e sea surface 
height (SSH, colors, cm/10 yr) 
and surface wind (vector, 
ms−1/10 yr), and g precipitation 
(colors, mmd−1/10 yr) and sur-
face wind (vector, ms−1/10 yr) 
from ensemble means of the 
all-forcing runs from 16 CMIP5 
models during 1900–1940 in 
the TIO. b, d, f and h are the 
same as (a), c, e and g but for 
1965–2005, respectively

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 11  Climatology of surface 
wind (vector, m/s) and sea 
surface height (SSH, color, 
m) for the ALL are shown in a 
1900–1940 and b 1965–2005

(a) (b)
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the northern TIO and the northwesterly anomalies reduce 
the southeasterly trades over the southern TIO, which are 
favorable for the non-uniform IOBM-like warming pattern. 
As stated by Du et al. (2013), the anomalous SST warm-
ing over the south TIO induced by the down-welling ocean 
Rossby wave and enhanced atmospheric advection with 
positive precipitation anomalies (Fig. 10h), reflecting the 
slowdown of the Walker circulation under global warm-
ing (Tokinaga et al. 2012; Vecchi et al. 2006), trigger the 
anti-symmetric atmospheric circulation. Positive sea sur-
face height anomalies deepen the thermocline and sustain 
the SST inhomogeneous warming pattern, indicative of 
sea surface height anomaly-thermocline depth anomalies 
(Fig. 10f). These results are indicative of local ocean–
atmospheric interaction and ocean dynamic effect in the 
interior TIO, implying the importance for the non-uniform 
IOBM-like warming pattern formation.

The contributions of the combination of GHG and natu-
ral forcing during 1900–1940 and anthropogenic forcing 
during 1965–2005 to the TIO warming are further exam-
ined. The increase in longwave radiation and latent heat 
flux from atmospheric forcing part is primarily caused by 
the GHG (not shown). The variations in wind effect on 
latent heat flux exhibits two maximum centers located in 

the northern and southeastern TIO, which is at least in part 
favorable for the double-peak warming pattern, albeit with 
a smaller magnitude during 1900–1940 (Fig. 12a). Dur-
ing 1965–2005, it shows the inhomogeneous IOBM-like 
warming pattern (Fig. 12b). The anti-symmetric atmos-
pheric circulation significantly enhances during 1900–1940 
(Fig. 12c), with relatively large southwesterly north of the 
equator. The positive precipitation anomalies still exist 
(Fig. 12e), but with a magnitude smaller than that in the 
ALL. Note that the inhomogeneous IOBM-like warm-
ing with a larger magnitude is mainly attributable to the 
anthropogenic forcing during 1965–2005 (Fig. 12d), with 
the reinforced anti-symmetric wind anomalies. Consist-
ent with the anti-symmetric circulation structure, the pre-
cipitation pattern is very similar to the ALL (Fig. 12f). Our 
results succeed in capturing salient spatio-temporal charac-
teristics and crucial physical mechanisms for the double-
peak and inhomogeneous IOBM-like warming pattern, 
which are separately induced by the combined effect of the 
GHG and NAT, and the ANT. We further demonstrate that 
internal ocean–atmosphere interaction and ocean dynamic 
processes within the TIO may be identified as the major 
physical causes of maintaining the TIO inhomogeneous 
warming.

Fig. 12  The linear trend of 
a wind effect on latent heat 
flux from atmospheric forcing 
part (QE

W, colors, Wm−2/10 yr) 
and surface wind (vector, 
ms−1/10 yr), c SST (colors, 
K/10 yr) and surface wind (vec-
tor, ms−1/10 yr) and e precipi-
tation (colors, mmd−1/10 yr) 
and surface wind (vector, 
ms−1/10 yr) from ensemble 
means of the GHG-forcing-
only and natural-forcing-only 
runs from 16 CMIP5 models 
during 1900–1940 in the TIO. 
b, d and f are the same as (a), 
c and e but for ensemble means 
of anthropogenic-forcing-only 
runs from the same 16 CMIP5 
models during 1965–2005, 
respectively

(a) (b)

(c) (d)

(e) (f)
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4  Summary and discussion

4.1  Summary

We have carried out an investigation into the important 
physical mechanisms responsible for the TIO SST non-
uniform warming during 1900–2005 by using the latest 
16 CMIP5 models against observations. Our analysis is 
primarily based on ensemble means of multi-model simu-
lations from six sets of experiments, including twentieth 
century historical runs, GHG-forcing-only runs, anthropo-
genic-forcing-only runs, natural-forcing-only runs, aerosol-
forcing-only runs and preindustrial control runs. Again, an 
optimal detection method is applied to capture fingerprints 
in observations.

The TIO inhomogeneous warming exhibits consider-
able spatio-temporal features as follows. On multi-decadal 
time scales, the observed SST warming trend during 1965–
2005 is approximately larger by a factor of 2 than that 
during 1900–1940. The warming trend during 1900–1940 
is mainly attributable to the combined effect of GHG and 
natural forcing. During 1965–2005, anthropogenic forc-
ing well captures the robust warming trend. On the other 
hand, the double-peak warming pattern with anomalous 
warming in the northwestern or western TIO and rela-
tively weak warming in the southeastern TIO is the domi-
nant mode of the TIO SST variability during 1900–1940. 
During 1965–2005, the observed warming trend exhibits 
a basin-wide warming pattern of the same polarity with a 
pronounced geographic distribution covering the entire 
TIO basin, which is generally referred to as the non-uni-
form IOBM-like warming pattern. The optimal detection 
analysis indicates that the double-peak warming pattern is 
mostly caused by the combined effect of GHGs and natu-
ral forcing, with some cooling owing to the aerosol forcing 
and substantial, but not implausible contribution from inter-
nally-generated variability. The inhomogeneous IOBM-like 
warming pattern is attributable, at least in a large part, to 
the anthropogenic forcing.

Moreover, the mixed-layer heat budget analysis dem-
onstrates that both atmospheric processes via radiative and 
turbulent fluxes and oceanic processes are vital to the for-
mation of the double-peak and non-uniform IOBM-like 
warming pattern, especially latent heat flux from atmos-
pheric forcing part. The wind effect on latent heat flux is 
also very important for the SST inhomogeneous warming 
pattern formation. From an internal ocean–atmosphere 
interaction perspective of view, surface wind anomalies are 
characterized by the weak anti-symmetric atmospheric cir-
culation during 1900–1940. The anti-symmetric wind pat-
tern features weak easterly (northwesterly) anomalies north 
(south) of the equator, weakening climatological westerly 
wind (southeasterly trades) north (south) of the equator 

and helping to maintain the SST warming over the north-
western (southeastern) TIO, a key physical mechanism for 
sustaining the double-peak warming pattern. In comparison 
with the weak anti-symmetric wind pattern, the striking 
wind pattern occupies the entire basin during 1965–2005 
due a large part to the anthropogenic forcing. The intensi-
fied anti-symmetric wind pattern reduces the climatologi-
cal westerly wind (southeasterly trades) north (south) of the 
equator, which is in favor of the inhomogeneous IOBM-
like warming pattern. Atmospheric GCM experiments have 
demonstrated that the anti-symmetric wind pattern is forced 
by robust SST warming and enhanced atmospheric convec-
tion over the south TIO, which in turn is sustained by the 
down-welling ocean Rossby waves. However, the conclu-
sion needs to be further substantiated on multi-decadal time 
scales. Our results imply that intrinsic ocean–atmosphere 
interaction and ocean dynamic processes are the predomi-
nant physical mechanisms for maintaining the TIO inho-
mogeneous warming pattern (Du et al. 2009, 2013). The 
recognition of the internal ocean–atmosphere interplay and 
ocean dynamics has vital implications for future regional 
climate projection, calling for improved monitoring and 
modeling of the TIO SST warming.

4.2  Discussion

There are some caveats of our results. Although the ALL 
can simulate, at least in part, the spatio-temporal char-
acteristic and relevant physical processes in the TIO, sig-
nificant difference between the observations and models 
exists. The observed SST trend is relatively small along 
5°S–10°S and increases southward to 15°S–20°S in the 
southern TIO (Fig. 5a, b), while the SST warming trend is 
larger along 5°S–10°S than that along 15°S–20°S in ALL 
(Fig. 5c). So, there appears to be a different N-S change 
in the trend between the observations and ALL. According 
to Fig. 8c, ocean heat transport (Do) shows cooling trend 
along 5°S–10°S, consistent with the smaller SST warming 
trend in observations (Fig. 5a, b). In Fig. 8a, atmospheric 
forcing (Qa) exhibits different feature with larger trend 
along 10–15S and decreasing southward and northward. 
Additionally, latent heat flux from atmospheric forcing part 
displays the largest trend along 10S (Fig. 9g), similar to the 
changes in the wind effect on latent heat flux of the atmos-
pheric forcing part in ALL (Fig. 10a), which qualitatively 
accounts for larger warming trend along 5°S–10°S than that 
along 15°S–20°S (Figs. 5c, 10c). These results suggest that 
the difference between observations and the ALL is mainly 
caused by the wind effect on the atmospheric forcing part 
of latent heat flux. During 1900–1940, the relatively small 
easterly anomalies appear in the equatorial Indian Ocean, 
although the equatorial Indian Ocean SST warming trend 
is homogenous (Fig. 10c). The east–west SSH change 
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gradient is not also significant (Fig. 10e), which indicates 
that the thermocline response to the equatorial zonal wind 
anomaly isn’t reproduced by the ALL. The easterly anom-
alies may cause more precipitation over the equatorial 
western Indian Ocean than that over the equatorial eastern 
Indian Ocean (Fig. 10g). It is indicated that the ALL pro-
duces the unrealistic Bjerknes feedback, primarily includ-
ing the zonal wind response to SST anomaly. During 1965–
2005, the easterly anomalies are larger along 5°S–20°N, 
but the SST warming trend shows the IOBM-like warm-
ing pattern with a large magnitude (Fig. 10d). The robust 
easterly anomalies also uplift the thermocline in the east-
ern basin (small SSH trend, Fig. 10f) and deepen the ther-
mocline in the western basin (large SSH trend, Fig. 10f). 
Moreover, the more precipitation occurs in the western 
TIO than that in the eastern TIO (Fig. 10h). It is worth 
noting that the simulation of the Bjerknes feedback in the 
ALL is unrealistic especially with regard to the zonal wind 
response to SST anomaly over the TIO, as discussed in Liu 
et al. (2013). Therefore, we can also interpret the differ-
ence between the observations and ALL during 1900–1940 
as attributable, at least in part, to model deficiencies, espe-
cially the unrealistic simulation of the Bjerknes feedback.

Although the components of the response to a wide 
range of different forcings are well established (Tay-
lor et al. 2012), the real effect of different forcings is still 
uncertain because of the nonlinearity of the climate sys-
tem. Here, a multi-model ensemble means approach is 
employed to reduce systematic errors of individual models 
and inter-model differences, and therefore make our results 
more authentic. Moreover, only finite realizations of a few 
models and a limited number of models that carried out 
necessary experiments are available, a fact that constrains 
the size of the multi-model ensemble. The use of as many 
CMIP5 models as possible in order to decrease model 
biases and obtain different combinations of forcings is of 
vital importance to quantify the TIO SST warming.

The physical causes of the TIO warming are still seen 
as a challenge for scientific communities. Concerning the 
accuracy and duration of different surface heat flux prod-
ucts, there occurs considerable uncertainty for the net heat 
flux as a significant cause for the TIO SST warming (Yu and 
Weller 2007). Ocean general circulation models even show 
a larger spread (Godfrey et al. 2007). With a substantial 
slowdown of the Indian Ocean Cross-Equatorial Cell (CEC) 
for the period 1955–1990 (Schoenefeldt and Schott 2006) 
and Subtropical Cell (STC) from 1992 to 2000 (Lee 2004), 
even a recovery of the Indian Ocean STC over 2000–2006 
(Lee and McPhaden 2008) may be associated with the SST 
warming. Besides these local heat transports, Pacific decadal 
variability via atmospheric bridge and a slowing Indonesian 
Throughflow (ITF) transport have an important impact on 
multi-decadal changes in the TIO SST (Annamalai et al. 

2005; Ashok et al. 2004). Specifically, ENSO has played 
an important role in modulating the western Indian Ocean 
warming since the 1950s (Roxy et al. 2014). The intensifi-
cation of IOBM from the late nineteenth to the early twen-
tieth century is modulated by multi-decadal variations in 
ENSO (Chowdary et al. 2012). Due to the complexity and 
richness of these issues, a great deal of efforts should be 
made to have a comprehensive understanding of the physi-
cal mechanisms for the TIO SST warming pattern.
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