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Abstract A simple and useful method, the sliding temporal
correlation (STC) analysis, is employed in the present work to
investigate the predictable time (PT) of two typical chaotic
numerical models (Lorenz system and Chen chaotic system)
and reliable computing times (RCT) of an atmospheric general
circulation model (ECHAM5). Through kinds of numerical
experiments, results indicate that the maximal prediction time
of Lorenz system (and Chen chaotic system) detected by STC
method is coherent well with that by classical error limitation
method, suggesting the effective role of the STC method.
Then, taking the geopotential height for example, the RCT
of ECHAM5 and potential impact factors such as the integra-
tion time step, initial condition, and model’s resolution are
explored. Results reveal that (1) the high-value areas of the
RCT are mainly situated in the tropics, and the global mean
RCT (GMRCT) decreases from with the time step increasing;
(2) the ocean forcing can enlarge the difference of the RCT
between that averaged over the Southern Hemisphere (SH)
and Northern Hemisphere (NH), which implies the RCT in the
NH may be more sensitive to the computation error than that
in the SH; (3) the model’s RCT also displays significant
seasonality having longer (about 1–2 days) GMRCT in the

experiment integrating from winter than that from summer;
(4) the RCT of the high-resolution (T106) ECHAM5 shows
similar spatial feature to that of low-resolution (T63)
ECHAM5, but the GMRCT and hemispheric difference
decreases.

1 Introduction

The predictable time (PT) or reliable computing time (RCT) of
a numerical model can be simply defined as the specific mo-
ment when the error of the numerical model, which increases
gradually during the numerical calculation because of the algo-
rithm truncation error and float-point round-off error, reaches
the prescribed threshold. Previous studies documented that
some nonlinear systems still have the RCT due to the round-
off error even they have perfect initial values (Li et al. 2000;
Teixeira et al. 2007; Liao 2009). For instance, they pointed out
that the Lorenz system (LEs) has a PT with value of about
35 time units (TU) under double precision computation. As for
a more complex numerical model, such as the atmospheric
general circulation model (AGCM) and the weather forecast
model, both the initial values and algorithm/rounding errors can
influence the model’s RCT and further constraint the model’s
prediction/simulation capability. Thus, the RCT of the numer-
ical model is not only a mathematical issue but also an essential
factor to evaluate the model’s performance, which is of great
importance andworth investigation. Despite that several studies
focused on the computability of the numerical model (Wang
et al. 2009; Song et al. 2012), the specific RCT of such kind of
model (AGCM or weather forecast model) and the method to
estimate the model’s RCT are still not well understood, which
calls for further study.

The PT/RCT of one numerical model is close related to the
PT/RCT of its dynamic system as well as the error growth law.
The Lyapunov exponent is one commonmethod to describe the
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average growth rate of the initial error of one chaotic system,
which is widely adopted to explore the characteristic of the
chaotic dynamic system (Oseledec 1968). As for a chaotic
system, if its initial error is δ0 and allowed maximal error is Δ
(referred as error limitation), then the predictability limit of the
chaotic system is defined as Tpe 1

λmax
ln Δ

δ0

� �
, among which

λmax is the maximum Lyapunov exponent (Eckmann and
Ruelle 1985; Wolf et al. 1985; Lorenz 1996). After that, the
Lyapunov exponent is extended to the local Lyapunov expo-
nent (Yoden and Nomura 1993) and nonlinear local Lyapunov
exponents (NLLE) (Ding and Li 2007a, b; Ding and Li 2012;
Li and Ding 2011), which are employed to study the local
dynamical feature of the chaotic system. Moreover, the NLLE
is a newly developed method that employs the primitive equa-
tion to estimate the average error growth rate and error satura-
tion property and can be used to the investigated the predict-
ability of the real weather and climate system.

The error limitation (Δ) is an approach to reveal the RCT /
PT which is used in both the linear and nonlinear Lyapunov
exponent methods. For convenience, we usually utilize the
error growth curve rather than the Lyapunov exponent to
estimate the RCT /PT of the dynamic system. At first, we
obtain the error growth curve through numerical experiment

or other methods, then figure out the first moment when the error
δ (δ0<Δ) reaches Δ, namely the RCT/PT. As for different
dynamic systems, the choice of appropriate Δ often depends
on the true solutions. To avoid this dependency ofΔ, the relative
error approach was adopted in some studies (Li et al. 2000;
Wang et al. 2006; Liao 2009; Liao and Wang 2014). For exam-
ple, Liao (2009) applied the relative error 5 %Δ and introduced
another limit u̇1u̇2 < −ε (ε>0, u̇1 and u̇2 denote the trend of
different solutions to one variable) to qualify the RCT/PT. The
criteria for the NLLE to study the RCT are more complex.
Concerning a nonlinear dynamic system, we often choose
Δ ¼ 95 %E (E is the saturation error). Before we get the
RCT/PT, we need to calculate E first, however, the calculation
of E needs enough samples and is rather time-consuming.

The error limitation methods mentioned above can be
applied to the investigation of RCT/PT on both the whole
and the local or individual variable of one dynamic system.
Besides, for a less δ0, numerical experiment and theoretical
analysis results confirmed that the RCTs of a dynamic system
based on the methods mentioned above showed similar re-
sults, and the RCT/PTs of individual variable and the whole
system are very close. In view of the limitation of the above
methods, such as time-consuming and system dependency, in
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Fig. 1 The evolutions of the
solutions and solution errors of
the Lorenz system based on the
reference and error initial value,
and the solution error is defined as
the difference between the
reference solution and error
solution. a, c, and e is solutions
for x,y,z, respectively. The solid
blue (dotted red) lines in a, c, and
e exhibit reference (error)
solution. b, d, and f is the solution
errors (solid blue line) for x,y,z,
respectively, among which the red
line is the error limitation Δ
(here, Δ=±5)

Y. Liu et al.540



this study, we present a simple and useful method, the sliding
temporal correlation (STC), to study the RCT/PT of the dy-
namic system and the complex AGCM; the introduction and
the advantage of the STC method will be given in the follow-
ing sections.

2 Methodology

The correlation analysis method is a common method that is
widely employed to investigate the relationship between two
samples, no matter whether the two samples are linear or
nonlinear systems. The STC is based on the common corre-
lation method and supposing a sliding window and often
applied to study the variation of the relationship between
two time series. The significance of the relationship between
the two time series can be tested by the two-tailed Student’s t
test, and for a given confidence level, such as 99 %, the
transition time or time span of their relationship can be
achieved based on the evolution of the STC.

Generally, the STC is applied to study the relationship
between two different time series or two different dynamic
systems. While, if we apply it to two similar time series x, y,
and y is same as x but with initial error, the STC can be
considered as the linkage between the error time series and
the reference time series, which further can be utilized to
investigate the RCT. In addition, we introduce a limit that

a

b

c

Fig. 2 The evolution of the STC between the reference and error solu-
tions. a x, b y, and c z. The horizontal dotted line denotes the reference
value corresponding to the 99 % confidence level, and the vertical dotted
line denotes the first time when the STC reaches the reference value

a d

b e

c f

Fig. 3 The STC and solution error based on the experiment with initial error δ0=10
−6. a–c is same as Fig. 2a–c and d–f display the solution error same as

Fig. 1b, d, f
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the initial error is relative small and the correlation between
reference time series and the error time series close to one; and
when the error saturates, the correlation gets close to zero.
While, as the limitation of number of the sample and the
sliding window we select to compute the STC, the first time
when the STC beyond the confidence level is defined as the
RCT. These criteria are suitable for common numerical
models. And on contrast to the error limitation, the STC shows
several advantages: (1) it can be applied to study the RTC of
the linear and nonlinear dynamical system; (2) it avoids the
mistake of the RCT caused by the severe disturbance of the
error when using the error limitation method; (3) it is not
necessary to use the absolute error, to estimate the solution
domain and get the saturation error in before.

Hereafter, we will employ the STC method to study its
validity in detecting the RCT/PT of the dynamic systems.

Firstly, we examine the PT of the common chaotic dynamic
systems by using both the STC and the error limitation
methods, and then the STC is adopted to explore the RCT/
PTof one climate numerical model. It should be noted that the
STC mentioned below denotes the correlation between two
samples from similar numerical model results but with the
initial error (or with same initial value, but different parame-
ters such as different time step, initial condition, and so on).

3 The predictable time (PT) of the chaotic dynamical
systems

In this section, the common chaotic systems, Lorenz system
and Chen system, are selected as examples, and the STC and
error limitation methods are used to detect their PTs.

a bFig. 4 a. The Tc−M diagram for
Lorenz system with K=666, and
the line is Tc=3M. b. The Tc−K
diagram for Lorenz system with
M=32 and the line is Tc=0.75K−
7.5. The precision here is binary
bits. The triangle (dotted) denotes
the results of error limitation
(STC) method

a d

b e

c f

Fig. 5 Same as Fig. 3 but for Chen system with initial error δ0=10
−5
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3.1 Lorenz system

The Eq. 1 shows the Lorenz system (Lorenz 1963), among
which σ, r, b are nondimensional constants with values 28.0,
10.0, and 8/3, respectively, and t is nondimensional time (unit:
TU). As for the Lorenz system, three numerical experiments
with different initial values are conducted which aims to get
the reference solution and error solution. The reference initial
values of x0,y0,z0 are −15.8, −17.48, and 35.64, respectively,
and the other two error initial values of x0,y0,z0 are similar as
the reference ones but with less disturbance δ0=10

−5 and δ0=
10−6 plus on the x0,y0,z0, respectively.

dx

dt
¼ −σxþ σy

dy

dt
¼ rx−y−xz

dz

dt
¼ xy−bz

8>>>>><
>>>>>:

ð1Þ

Based on the theory of error limitation, the predictability

limit of the chaotic system is defined as Tpe 1
λmax

ln Δ
δ0

� �
, the

PT here is about 1
0:906 ln

5
10−5

� �
¼ 14:5 TU. As for the exper-

imental results, the evolutions of the reference and error solu-
tions and their differences for x,y,z are plotted in Fig. 1. The
reference solution and error solution for x in Fig. 1a–b show a
very little difference prior to about 15 TU and notable differ-
ence since then, and corresponding to theΔ=±5 in Fig.1b, the
experiment result indicates that the PT for x is 14.7 TU. The
features of the reference and error solutions for the y resemble
those for x, and the PT revealed by the experiment is 14.1 TU.
As for the variable z, the spread between reference and error
solution is not as significant as the variables x, y, and from the
error time series in Fig. 1f, we can obtain the PT for z is
13.9 TU. The PTof each variable from numerical experiments
results is consistent with the overall PT of the Lorenz system

a d

b e

c f

Fig. 6 Same as Fig. 5 but for initial error δ0=10
−6

a bFig. 7 Same as Fig. 4 but for the
Chen System
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from the theoretical analysis, and the overall PT from the
numerical experiment can also be achieved which is close to
the PT based on theoretical analysis (figures not shown).

Now, we employ the STC method to study the PT of the
Lorenz system based on numerical results of the reference and
error solutions. Here, the sliding window is defined as 20 time
intervals (one time interval is 0.1 TU), i.e., 2 TU. Figure 2 shows
the evolutions of the STC between the reference and error
solution for x,y,z, respectively. We can see the PTs for x,y,z are
13.9 TU, 13.9 TU, and 21.0 TU, respectively, based on the 99%
Student’s t test. The PTs of variables x,y are very close to the
theoretical analysis (14.5 TU) and Δ detection (14.7 TU,
14.1 TU). However, the PT tested from STC is quite different
from that from theoretical analysis and Δ detection. As can be
seen in Figs. 1e and 2c, the reference and error solution of z show
similar evolution feature and the STC changes slowly, therefore,
the statistical PT is longer. Since theΔ detection method is from
the dynamical respect to get the PT, and the STC is a statistical
method that calls for multisamples of numerical experiments to
get the PT, thus the PT from single experiment which is different
from the theoretical andΔ method is acceptable.

Another similar experiment is also made based on the
initial error δ0=10

−6, corresponding to which the theoretical
PT is about 17.0 TU. The STCs and differences between
reference solution and error solution are shown in Fig. 3.
The PTs for x,y,z detected by STC method are 17.5 TU,
17.2 TU, and 17.0 TU, respectively, (Figs. 3a–c), and those
by error limitation Δ method are 17.7 TU, 17.1 TU, and
16.9 TU, respectively (Figs. 3d–f). Both of them match well
with the theoretical results.

Since its ability to reveal the evolution of the correlation
between two time series, the STC method can also be
employed to detect the RCT of a dynamic system caused by
numerical error. For example, Liao (2009) applied clean nu-
merical simulation method with 400 orders Taylor series and
800 significant digits mathematical program to obtain the
1,200 TU result. Moreover, Liao (2009) propose the experi-
mental way to obtain the relation between the order of Taylor
methods (M) and Tc (the reliable computation time sometimes
be called as critical computation time, and we abbreviate it as
Tc). Since this type of computation have no initial error δ0,
thus we can regard it as a different issue with predictability of
initial error problem. But the determination of error ap-
proaching to error limitation is similar, so when we study Tc,
we can still use the Δ=5 as error limitation criterion. The
numerical algorithms to study Tc can be found in Liao (2009)
and Wang et al. (2006, 2012). By applying this method, we
first keep the precision, for example, K=666 and change the
order from M=20−100 (interval with 10), then we could
obtain each Tc according toM and we call it as Tc−M diagram.
Secondly, we keep the order be constant such as M=32 and
make the precision various K=50−200 (interval 10) to obtain
the Tc−K diagram.

The result indicates that the STC can obtain the correct Tc−
M and Tc−K diagrams as well as the error limitation (Δ=5)
method (Fig. 4). The correct Tc−M and Tc−K diagrams are
fundamental to analyse the computation parameter to obtain
the reliable computation time result in [0,Tc], and these pa-
rameters instruct the long time simulation of Lorenz system.

3.2 Chen system

Chen and Ueta (1999) documented another chaotic system
depicted in Eq. 2, among which a=35,b=3,c=28. Like that in
Section 3.1, we conducted three experiments to get the (x,y,z)
solutions including one reference experiment with initial
values (x0,y0,z0)=(−3,2,20) and two contrast experiments
having initial values as that in the reference one but with
errors δ0=10

−5 and δ0=10
−6 plus on them, respectively.

dx

dt
¼ −axþ ay

dy

dt
¼ c−að Þxþ cy−xz

dz

dt
¼ xy−bz

8>>>>><
>>>>>:

ð2Þ

The STC and error limitation methods are applied to study
the predictable time (PT) of Chen system. As for the contrast
experiment with initial error δ0=10

−5 (Fig. 5), the PTs for (x,y,
z) detected by STC (Fig. 5a–c) method are 5.3 TU, 5.3 TU,
and 8.3 TU, respectively, and those by error limitation method
are 6.2 TU, 6.1 TU, and 7.6 TU, respectively. The discrepan-
cies are within 1 TU. When the initial error is δ0=10

−6

(Fig. 6), the PTs for (x,y,z) detected by the two methods are

Table 1 The vertical and horizontal resolution and related default time
step of the ECHAM5

T31 T42 T63 T85 T106 T159 T213 T255 T319

L19 2,400 1,800 1,200 900 720 – – – –

L31 1,800 1,200 720 480 360 240 180 150 150

L39 900 900 600 450 360 240 180 150 120

Table 2 The description of the experiments

Number Name Description

1 AMIP Forcing by the varied SST, integrated
from 1978.1.1 to 1978.6.30

2 CTL Same as AMIP experiment but without
SST forcing,

3 CTL-JJA Same as CTL experiment but integrated
from1978.7.1 to 1978.12.31

4 CTL-T106 Same as CTL but based on the high
resolution version T106

Y. Liu et al.544



very close, and those by STC method are 7.5 TU, 7.5 TU, and
7.6 TU, respectively (Fig. 6a–c) and those by error limitation
method are 7.5 TU, 7.5 TU, and 7.5 TU, respectively. Besides,
the PTs detected by the two methods become closer as the
initial error decreases. From Figs. 3 and 6, we can see that the
PTs for the Lorenz system are longer than those for Chen
system; this is because the Lyapunov exponent for Lorenz
system is larger than that for Chen system.

The result in Fig. 7 indicates that the STC can obtain the
correct Tc−M and Tc−K diagrams as well as the error limita-
tion (Δ=5) method for Chen system.

4 The RCTof one AGCM (ECHAM5)

The results revealed in Section 3 indicated the capability of the
STC method in studying the PT and RCT for the typical
chaotic system. Moreover, the STC method is simple, easy

computing, and not subject to the system property (linear or
nonlinear). In this section, we employ it to discuss the RCTof
one AGCM.

4.1 Model and experiment design

The AGCM ECHAM5 is adopted in this study, which is
supplied by the Max Planck Institute for Meteorology, the
detailed introduction can be found in Roeckner (2003). The
ECHAM5 is a distinguished model that is utilized in the many
international model comparison projects such as IPCC AR3,
AR4, and AR5. And it is considered to be one of the excellent
models in the world and is widely used in the climate research.

It is a spectral model and provides kinds of choice in the
vertical and horizontal resolutions. Corresponding to each
resolution, there is a specific integration time step (in
Table 1). As for this kind of complex climate model, the order
in the spatial-temporal integration is fixed, which is not easily

a b

c d

e f

Fig. 8 The spatial distribution of the RCTs (unit: day) of the
500 hPa geopotential height (shaded) and their zonal mean (line)
based on the AMIP experiment with different time steps. (a)

300 s, (b) 400 s, (c) 600 s, (d) 800, (e) 900 s, and (f) 1,200 s.
The value in the center of each subpanel denotes the global mean
of the RCTs
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modified. Whereas, the integration time step is an operational
way to study the RCTof the model. In addition, the ECHAM5
model provides a parameter delta_time to facilitate users to
choose the integration time step. In view of the computing
resources, we chose the model resolution of T63L19, seven
experiments are made with integration time steps as 200, 300,
400, 600, 800, 900, and 1,200, and the experiment with time
step 200 denotes the reference time step. The model is inte-
grated from 1978.1.1~1978.6.30, and the outputs with interval
6 h are used in this study. Each of the above seven experiments
consists of two set experiments which are related to
with/without sea surface temperature (SST) forcing separately.
The two set experiments are named as the control run (the sea
surface temperature (SST) is fixed, named as CTL) and the
SST forcing run (named as AMIP). In order to investigate the
initial condition (the start time of the model integration) and
the model resolution impacts on the RCT, two additional
experiments are conducted. One is similar to the CTL run
but with the model integration from 1978.7.1~1978.12.31

(named as CTL-JJA), another one is like CTL run but with a
high model resolution T106L19 (named as CTL-T106). The
experiments description is shown in Table 2.

Asmentioned above, for one variable from the experiments
of same kind, each time series has the same initial value, and
then the time series may vary differently under the dynamical
system control because of different time steps, forcing, and
resolutions. Therefore, we take the variable geopotential
height as an example to study the RCT of the ECHAM5.
Here, we use the 6-h geopotential height outputs, the sliding
window with value 20, and the 99 % confidence level based
on Student's t test. And the spatial distribution of the RCT of
the ECHAM5 is concerned in this section.

4.2 The RCT of the model

Figure 8 displays the spatial distributions of the RCT of the
500 hPha geopotential height based on the AMIP experiment,
which reflects the RCT of the model with the SST forcing. It

a b

c d

e f

Fig. 9 Like Fig. 8 but for the CTL experiment
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can be seen that the high-value areas of the RCT are mainly
located in the tropics having four maximum centers over the
northern Indian Ocean, western and eastern Pacific Ocean,
and tropical Atlantic Ocean. As the increase of the time steps
from 300 to 1,200 s, the amplitudes of the RCT over the four
maximum centers decrease significantly, especially over the
Atlantic Ocean, and the global mean RCTs of the model also
reveal decreasing features having values from 13.29 days
(Fig. 8a) to 9.58 days (Fig. 8f). The zonal mean RCTs indicate
that the global mean RCTs is almost beyond 10 days with the
exception over the high latitudes in the NH, and the maximum
center notably situates over the tropics with value above 17.5.
Moreover, the RCTs over SH is about 2~3 days longer than
those over NH, which suggests the RCTs over NH is more
sensitive than those over SH.

Without the SST forcing, a similar experiment to the AMIP
experiment is made, i.e., the CTL experiment. Corresponding
to the CTL experiment, the RCTs distribution of 500 hPa
geopotential height is shown in Fig. 9. The high values of

the RCTs are also situated over the tropics, having four max-
imum centers located over the northern Indian Ocean, western
and eastern Pacific Ocean, and tropical Atlantic Ocean. As the
increase of the time step, the amplitudes of the RCTs and their
global mean exhibit evident decrease; this resembles the fea-
tures in the AMIP experiment. In contrast to the features in
Fig. 8, the high-value centers over the northern Indian Ocean
and western Pacific Ocean are more stable despite its decrease
in amplitude with the time step. The zonal mean RCTs reveal
similar features in Fig. 8, except that the discrepancy between
the NH and SH weakens. It can be concluded that with SST
forcing, the asymmetry of the RCTover SH and NH enhances
because of the large span of ocean area and the SST hemi-
spheric contrast between NH and SH.

The result of the CTL-JJA experiment is plotted in
Fig. 10. The spatial distribution of the RCTs is irregular
comparing to that in Fig. 9. The high-value centers are
located in the tropics having similar areas to those in
Fig. 9. However, as the increase of the time step, the

a b

c d

e f

Fig. 10 Like Fig. 8 but for the CTL-JJA experiment
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amplitude of the maximum centers decreases over the
northern Indian Ocean and western Pacific Ocean but in-
crease over the eastern Pacific Ocean and tropical Atlantic
Ocean. The global mean RCTs is about 2 days shorter than
those in CTL run, and they decrease more slowly. This
indicates the seasonality characteristic of the RCTs, and the
error may develop faster in summer than that in winter, but
RCTs reaches 9.5 days when the errors saturate (Fig. 10d).

Figure 11 depicts the spatial distribution of RCTs based on
the CTL-T106 experiment. We can observe that the RCTs of
the high-resolution version model resemble those of low-
resolution one, namely that the RCTs have maximum centers
over the northern Indian Ocean, western and eastern Pacific
Ocean, and tropical Atlantic Ocean and decrease with the
increasing of the time step. Comparing to Fig. 9, the RCTs
of the high-resolution model are shorter. With respect of the
zonal mean of the RCTs, the maximum value in the tropics is
longer than that in Fig. 9 and the RCTs reveal evident sym-
metric features.

We also investigated the vertical distribution of RCTs of the
model based on the AMIP experiment. When the integration
time step is close to the reference time step (Fig. 12a–c), the
high-value areas of the RCT is over the mid/high troposphere
and the amplitude can reach about 15–18 days, especially over
the tropics. As the time step increases, the RCTs decrease
significantly above 300 hPa in the tropics and the low/
middle level around 60° N (about 3~6 days), but increase in
the high latitudes in the NH (Fig. 12d–f). The RCTs over the
low level in the tropics and other regions change a little, and
the vertical distribution of the RCTs over polar area reveals
barotropical features. These characteristics can also be ob-
served in the CTL experiment (figures not shown).

5 Conclusion and discussion

The present study investigated the PT of the Lorenz system
and Chen system using the simple STC method, because the

a b

c d

e f

Fig. 11 Like Fig. 8 but for the CTL-T106 experiment
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intrinsic characteristics of these chaotic systems are different
from each other, especially their maximum Lyapunov expo-
nents, which bring about different error accumulation and
further the PTs. The PTs, Tc−M and Tc−K diagrams of each
chaotic system detected by STC, match well with that by the
error limitation method. The result indicates the effectiveness
of the STC in studying the PT and RCT.

By using the STC method, taking the geopotential height
for example, the RCT of ECHAM5 and potential impact
factors such as the integration time step, initial condition,
and model’s resolution are explored through kinds of numer-
ical experiments. Results indicate that (1) the high-value areas
of the RCTare mainly situated in the tropics, and the GMRCT
decreases as the time step increases; (2) the ocean forcing can
enlarge the difference of the RCT between that of the averaged
over SH and NH, which implies the RCT in the NH may be
more sensitive to the computation error than that in the SH; (3)
the model’s RCTalso displays significant seasonality showing
longer (about 1–2 days) GMRCT in the experiment integrat-
ing from winter than that from summer; (4) the RCT of the
high-resolution (T106) ECHAM5 shows similar spatial fea-
ture to that of low-resolution (T63) ECHAM5, but the
GMRCT and hemispheric difference decreases.

In contrast to the studies on the PT of the weather system
using the observational data and NLLE method by Ding and
Li (2007b), the present work also shows maximum RCTs in
the tropics, but the RCTs in present study over the northern

and southern Polar Regions are shorter than those in Ding and
Li (2007a, b). This suggests the RCTover the Polar Regions is
sensitive to the error accumulation, which is contrary to that it
should have longer RCT. On this view, it can be concluded the
error around the Polar Regions is not well controlled in the
model, which is one difficulty point in improving the model’s
performance.

The STC method is simply based on the statistics and
investigates the RCT of numerical models using sequential
time series, revealing effectiveness and advantages in easy
computing, dynamical clarity, and accuracy. It can be widely
used to study not only the error development of dynamic
systems but also in the distinct PT of the real climate using
the reanalysis datasets, which will be explored in future work.
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