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[1] In this study, we focus on a deciduous forest in central Massachusetts and
investigate the relationships between global climate indices and CO2 exchange using
eddy‐covariance flux measurements from 1992 to 2007. Results suggest that large‐scale
circulation patterns influence the annual CO2 exchange in the forest through their effects
on the local surface climate. Annual gross ecosystem exchange (GEE) in the forest is
closely associated with spring El Niño–Southern Oscillation (ENSO) and Pacific Decadal
Oscillation (PDO), previous fall Atlantic Multidecadal Oscillation (AMO), and previous
winter East Pacific–North Pacific (EP‐NP) pattern. Annual net ecosystem exchange
(NEE) responds to previous fall AMO and PDO, while annual respiration (R) is impacted
by previous fall ENSO and Pacific/North American Oscillation (PNA). Regressions based
on these relationships are developed to simulate the annual GEE, NEE, and R. To
avoid problems of multicollinearity, we compute a “Composite Index for GEE (CIGEE)”
based on a linear combination of spring ENSO and PDO, fall AMO, and winter EP‐NP
and a “Composite Index for R (CIR)” based on a linear combination of fall ENSO and
PNA. CIGEE, CIR, and fall AMO and PDO can explain 41, 27, and 40% of the variance of
the annual GEE, R, and NEE, respectively. We further apply the methodology to two other
northern midlatitude forests and find that interannual variabilities in NEE of the two
forests are largely controlled by large‐scale circulation patterns. This study suggests that
global climate indices provide the potential for predicting CO2 exchange variability in
the northern midlatitude forests.

Citation: Zhang, J., L. Wu, G. Huang, and M. Notaro (2011), Relationships between large‐scale circulation patterns and carbon
dioxide exchange by a deciduous forest, J. Geophys. Res., 116, D04102, doi:10.1029/2010JD014738.

1. Introduction

[2] The terrestrial ecosystem plays a dominant role in
influencing interannual variability of the global carbon
cycle, with major contributions from northern midlatitude
forests [e.g., Tans et al., 1990; Keeling et al., 1996; Battle
et al., 2000; Houghton, 2000]. The interannual fluctuations
of northern midlatitude forest CO2 exchange have been found
to be regulated by weather and seasonal climate variables
such as surface air temperature, summertime solar radiation,
and precipitation anomalies [e.g., Graumlich et al., 1989;
Goulden et al., 1996; Barford et al., 2001; Dunn et al., 2007;
Wang et al., 2008].
[3] Recently, the eddy‐covariance technique has emerged

as a popular way to assess ecosystem CO2 exchange because

the technique can produce a direct and continuous measure-
ment of net CO2 exchange across the canopy‐atmosphere
interface [e.g., Wofsy et al., 1993; Baldocchi, 2003]. At
present, the lengthened eddy covariance data records of CO2

exchange provide an excellent opportunity to explore the
interannual variability of northern midlatitude forest CO2

exchange. Harvard Forest AmeriFlux site is located in a
mixed deciduous forest, northeast United States (Central
Massachusetts), and is the longest running eddy flux site in
the world. The site is typical of the northeast United States
biomes [e.g.,Wofsy et al., 1993;Goulden et al., 1996;Ollinger
et al., 2008a]. During the last 2 decades, CO2 exchange
between the atmosphere and Harvard Forest is the subject
of much research [e.g., Wofsy et al., 1993; Goulden et al.,
1996; Barford et al., 2001; Urbanski et al., 2007]. The net
CO2 exchange at the site has experienced distinct inter-
annual variations [Goulden et al., 1996; Barford et al., 2001;
Urbanski et al., 2007]. While variations in CO2 exchange at
short‐term scales (hourly to monthly) were simulated well
as prompt responses to the weather patterns and local con-
ditions at Harvard Forest [e.g., Urbanski et al., 2007] and
other northern midlatitude forests [e.g., Hollinger et al.,
1999], interannual variations and long‐term trend in CO2
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exchange are often poorly represented by current models
[Hanson et al., 2004; Siqueira et al., 2006; Richardson
et al., 2007; Urbanski et al., 2007]. The annual CO2

exchange at Harvard Forest have been found to be sensitive
to climatic factors during and before the growing season
[Goulden et al., 1996; Barford et al., 2001; Urbanski et al.,
2007]. The critical role of climatic factors in influencing the
interannual variability of CO2 exchange is also evident in
other northern midlatitude forests [e.g., Graumlich et al.,
1989; Houghton, 2000; Hui et al., 2003; Dunn et al.,
2007; Wang et al., 2008].
[4] Large‐scale circulation patterns influence the location

and intensity of synoptic atmospheric pressure systems,
and thereby significantly modify northernmidlatitude climate
[e.g., Wallace and Gutzler, 1981; Barnston and Livezey,
1987; Hurrell, 1995, 1996] and ecosystems [e.g., Goldstein
et al., 2000; Freedman et al., 2001; Morgenstern et al.,
2004; Urbanski et al., 2007; Hember and Lafleur, 2008;
Grant et al., 2009; Wharton et al., 2009]. Over the north-
east United States, previous studies have demonstrated that
the climate and circulation features are strongly influenced
by large‐scale circulation patterns in the Pacific, Atlantic
and Arctic regions. For example, there is evidence for sig-
nificant teleconnections between the Pacific Decadal Oscil-
lation (PDO), the Atlantic Multidecadal Oscillation (AMO),
the Southern Oscillation, Pacific/North American Oscilla-
tion (PNA), and the North Atlantic Oscillation (NAO) and
precipitation in the northeast United States [e.g., Richman
et al., 1991; McCabe et al., 2004; Notaro et al., 2006a].
The surface air temperatures in this region have also been
reported to be closely correlated with PNA, the North
Atlantic Oscillation (NAO), the Arctic Oscillation (AO),
the Quasi‐Biennial Oscillation (QBO), and the East Pacific–
North Pacific (EP‐NP) pattern [e.g., Leathers et al., 1991;
Bradbury et al., 2002; Thompson et al., 2002; Budikova,
2005; Notaro et al., 2006a]. In addition, the El Niño–
Southern Oscillation has been reported to affect drought and
snowfall over the northeast United States [Ropelewski and
Halpert, 1986; Griffiths and Bradley, 2007; Kunkel et al.,
2009].
[5] Considering the critical role of surface climate in

influencing northern midlatitude forest CO2 exchange, we,
therefore, hypothesize that large‐scale circulation patterns
exert influence on CO2 exchange at Harvard Forest and
other sites through their effects on local climatic conditions.
Moreover, the global climate indices may provide the potential
for predicting forest CO2 exchange. In this study, we take
Harvard Forest AmeriFlux site with data records from 1992
to 2007 as an example to investigate the relationships between
CO2 exchange and large‐scale circulation patterns, and
develop empirical models based on these relationships to
predict CO2 exchange.
[6] This paper is organized as follows. The data and sta-

tistical methods are described in section 2. In section 3, we
first examine the relationships among large‐scale circulation
patterns, surface climate, and CO2 exchange at Harvard
Forest. Then, we develop empirical models based on the
relationships between large‐scale circulation patterns and
CO2 exchange to predict CO2 exchange at Harvard Forest.
Also discussed in section 3 is the application of the meth-
odology to other two AmeriFlux forest sites which both

have more than 10 years of CO2 flux records. Finally, the
conclusions are given in section 4.

2. Data and Methods

2.1. CO2 Fluxes and Meteorological Data

[7] Net ecosystem exchange (NEE) represents the net
exchange of CO2 between terrestrial ecosystems and the
atmosphere [Law, 2006], gross ecosystem exchange (GEE) is
photosynthetic CO2 uptake, and R is the sum of heterotrophic
(soil microorganisms) and autotrophic (plants) respiration.
Continuous measurements of CO2 flux and environmental
variables are collected from online data information systems
maintained by AmeriFlux (http://public.ornl.gov/ameriflux/).
In this study we use NEE, R, and GEE data for 1992–
2007 at Harvard Forest Environmental Monitoring Site,
located on the Prospect Hill tract of Harvard Forest (42.54°N,
72.17°W, elevation 340 m a.s.l. (above sea level)) [Wofsy
et al., 1993; Goulden et al., 1996] (also J. W. Munger and
S. Wofsy, EMS ‐ Canopy‐Atmosphere Exchange of Carbon,
Water and Energy, Harvard Forest Data Archive: HF004,
1999, http://harvardforest.fas.harvard.edu:8080/exist/xquery/
data.xq?id=hf004; hereafter Munger and Wofsy, online
archive, 1999). NEE was measured by using eddy‐covariance
technique and R was measured during dark periods and esti-
mated as a function of soil temperature during light periods.
GEE was computed from NEE‐R (note that by convention,
uptake of CO2 from the atmosphere has negative sign so GEE
< 0). The flux of photosynthetically active radiation (PAR) is
radiation used by plants for photosynthesis and is important
in evaluating the effect of light on plant growth. We use
the measured PAR above the canopy (29 m) (Munger and
Wofsy, online archive, 1999) to explore its effects on CO2

exchange. Precipitation and temperature are obtained from
Shaler Meteorological Station (1992–2001, Harvard Forest,
42.53°N, 72.19°W) (E. Boose and E. Gould, Shaler Meteo-
rological Station (1964–2002), Harvard Forest Data Archive:
HF000, 1999, http://harvardforest.fas.harvard.edu:8080/exist/
xquery/data.xq?id=hf000), and FisherMeteorological Station
(2002–2007, Harvard Forest, 42.53°N, 72.19°W) (E. Boose,
Fisher Meteorological Station (since 2001), Harvard Forest
Data Archive: HF001, 2001, http://harvardforest.fas.harvard.
edu:8080/exist/xquery/data.xq?id=hf001).
[8] We also use NEE data from Howland Forest and

Morgan Monroe State Forest AmeriFlux research sites. The
Howland Forest AmeriFlux research site is located about
35 miles north of Bangor, Maine, USA (45.20°N, 68.74°W,
elevation 60 m a.s.l.), and has the data records from 1996 to
2008. The Morgan Monroe State Forest AmeriFlux research
site is located in south‐central Indiana (39.32°N, 86.41°W,
elevation 275 m a.s.l.) with the data measurements from
1998 to 2008.
[9] Table 1 describes the characteristics of the three sites.

It is worthwhile to note that the three forests have different
dominant species composition. Harvard Forest and Morgan
Monroe State Forest are located in mixed temperate forests
dominated by deciduous species, while Howland Forest is
located in a boreal northern hardwood transition forest with
predominantly evergreen species. Previous studies have
shown that the forest species can influence carbon uptake.
For example, Hollinger et al. [1999] demonstrated that the
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evergreen forest at Howland has longer growing season,
while deciduous forest at Harvard has greater maximum
rates of carbon uptake in midsummer.

2.2. Large‐Scale Circulation Patterns

[10] Global climate indices used in this study include
AMO, AO, EP‐NP, Multivariate El Niño–Southern Oscil-
lation Index (MEI), NAO, PDO, PNA, and QBO. The
methodologies and characteristics of the global climate
indices are listed in Table 2. All indices are obtained from
http://www.esrl.noaa.gov/psd/data/climateindices/list/. Fall
indices are defined from September to November of the
prior year. Winter indices are defined from December of
the prior year through February of the listed year. Since
there are no records of EP‐NP in December (the pattern
of EP‐NP is not a leading mode in December), we average
January and February to calculate the winter EP‐NP index.
Spring and summer indices are computed based on March–
May and June–August values, respectively.

2.3. Statistical Methods

[11] Since Spearman’s rank correlation is nonparametric
and insensitive to extreme values such as those commonly
encountered in meteorological time series, it is a useful
method to test for monotonic relationships [Sobolowski and
Frei, 2007]. We first calculate Spearman’s rank correlation
coefficients (r) to examine associations between the global
climate indices and annual CO2 exchange at Harvard forest.
[12] Composite analyses are then applied to the 5 stron-

gest and 5 weakest years of specific global climate indices
which show significant (p ≤ 0.05) correlations with the annual
GEE, NEE, and R at Harvard Forest. If both the correlation
and composite difference are significant at the 95% confi-
dence level, the relationship is thought to be robust in this
study. Spearman’s rank correlation and composite analysis
are also applied to examine the relationships between large‐
scale circulation patterns and surface climate, and between
surface climate and CO2 exchange. Finally, regressions based
on these global climate indices which have robust relation-
ships with the annual GEE, NEE, and R are developed to
simulate their interannual variations. The methodology is
also applied to Howland Forest and Morgan Monroe State
Forest AmeriFlux research sites which both have more than

10 years of CO2 flux records to test its applicability to other
sites.

3. Results

3.1. Relationships Between Climatic Indices and CO2

Fluxes

[13] Figure 1 shows Spearman’s rank correlation coeffi-
cients between the annual GEE, NEE and R and the seasonal
climate indices. The annual GEE is significantly and posi-
tively correlated with spring MEI (r = 0.66, p < 0.01) and
PDO (r = 0.52, p < 0.04), and winter EP‐NP (r = 0.52,
p < 0.05), while showing a significant anticorrelation with
fall (r = −0.58, p < 0.03) and winter (r = −0.52, p < 0.05)
AMO. Fall (r = −0.58, p < 0.03) and winter (r = −0.52,
p < 0.05) AMO are also found to inversely vary with the
annual NEE. Additionally, the annual NEE is negatively
correlated with fall AO (r = −0.57, p < 0.03), and is posi-
tively correlated with fall EP‐NP (r = 0.54, p < 0.04) and
PDO (r = 0.52, p < 0.04). The relationships imply that
during the period of 1992–2007, more negative NEE
anomalies are most often associated with warm phases of
fall and winter AMO and fall AO and with cool phases of
fall EP‐NP and PDO. The annual R is observed to be pos-
itively correlated to fall PNA (r = 0.55, p < 0.03), but is
inversely correlated to spring PNA (r = −0.64, p < 0.01).
Another global climate index inversely related to the annual
R is fall MEI (r = −0.59, p < 0.02). The annual GEE, NEE
and R do not exhibit any statistically significant relation-
ships with summer climate indices because large‐scale cir-
culation patterns/teleconnections are typically weak during
summer. It is interesting to note that the Pacific teleconnec-
tions are important for R (MEI, PNA), while both the Pacific
and Atlantic teleconnections affect NEE and GEE.
[14] The composite analysis is further applied to test the

relationships of the annual GEE, NEE, and R to global
climate indices identified in the correlation analysis. Table 3
presents composite differences in the annual GEE, NEE and
R between 5 strongest and 5 weakest years of global climate
indices. The composite annual GEE exhibits a significant
lower‐than‐normal value corresponding to a strong spring
MEI, spring PDO, winter EP‐NP, or a weak fall AMO sit-
uation. The weak spring MEI, spring PDO, winter EP‐NP,

Table 1. Site Descriptions Including Name and Location, Latitude, Longitude, Canopy Height, Time Span, Stand Age, Dominant
Species Composition, and References for Each Flux Site in the Analysis

Site Name and Location
Latitude
(deg)

Longitude
(deg)

Canopy
Height
(m) Time Span

Stand Age
(years) Dominant Species Composition References

Harvard Forest
(MA, USA)

42.54 −72.17 23 1992–2007 70–110 Temperate deciduous forest
dominated by red oak,
red maple, black birch,
white pine, and hemlock

Urbanski et al. [2007]

Howland Forest Main
(ME, USA)

45.20 −68.74 20 1996–2008 60–190 Conifer forest dominated by red
spruce, eastern hemlock, other
conifers, and hardwoods

Hollinger et al. [1999, 2004]

Morgan Monroe State
Forest (IN, USA)

39.32 −86.41 27 1998–2008 60–80 Mixed hardwood deciduous forest
dominated by sugar maple, tulip
poplar, sassafras, white oak, and
black oak

Schmid et al. [2000]
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or strong fall AMO phase brings an opposite change to the
annual GEE. However, the annual GEE does not exhibit
significant difference between 5 strongest and 5 weakest
years of the winter AMO. This suggests that the relationship
between the annual GEE and the winter AMO is not robust.
We therefore drop the winter AMO, and only use the other

four global climate indices in the following regression
analysis for the annual GEE. For the annual NEE, both
correlation and composite analyses show that it is closely
related with the fall AMO and PDO. However, composite
differences are not significant for the winter AMO, and fall
AO and EP‐NP. Therefore, the three climate indices are not

Table 2. Methodology, Characteristics, and References for Global Climate Indices Used in the Study

Name Definition Characteristics Data Sourcea References

AO (Arctic
Oscillation)

Leading principal component
(PC) of monthly mean sea
level pressure (SLP) in
Northern Hemisphere
(poleward of 20°N)

The oscillation exhibits a “negative
phase” with relatively low
pressure at the midlatitude
(about 45°N), and a “positive
phase” in which the pattern
is reversed.

CPC Thompson and Wallace [1998]

AMO (Atlantic
Multidecadal
Oscillation)

Detrended sea surface
temperature (SST)
anomalies averaged
over the North Atlantic
from 0 to 70°N

AMO‐like variability is associated
with small changes in the
North Atlantic branch of the
Thermohaline Circulation.

PSD Enfield et al. [2001]

EP‐NP
(East Pacific–
North Pacific
Pattern)

Orthogonally rotated (10
varimax rotations)
principal component
analysis (RPCA) of the
Northern Hemisphere
monthly mean height
anomalies at 700 hPa

EP‐NP pattern is a spring‐summer‐
fall pattern with three main
anomaly centers. The positive
phase of this pattern is associated
with above‐average surface
temperatures over the eastern
North America.

CPC Barnston and Livezey [1987],
Bell and Janowiak [1995]

MEI (Multivariate
ENSO Index)

First unrotated PC of six
observed variables
(SLP, zonal and
meridional component
of surface wind, SST,
surface air temperature,
total cloudiness fraction)
over the tropical Pacific

ENSO typically transitions from
a warm phase (El Niño)
to a cool phase (La Niña)
every 2–7 years in the
equatorial Pacific Ocean.

PSD Wolter and Timlin [1993, 1998]

NAO (North Atlantic
Oscillation)

The first leading mode of
Rotated Empirical
Orthogonal Function
(REOF) analysis of
monthly mean 500 mb
height during
1950–2000 period

NAO is a largely atmospheric
mode. It is one of the most
important manifestations of
climate fluctuations in the
North Atlantic and surrounding
humid climates. During the
winter, when the index is high
(NAO+), the Icelandic low
draws a stronger southwesterly
circulation over the eastern half
of the North American continent
which prevents Arctic air from
plunging southward.

CPC Hurrell [1995]

PDO (Pacific Decadal
Oscillation)

Leading PC from an
unrotated EOF
analysis of monthly
residual North Pacific
SST anomalies

SST normally remains consistently
above or below the long‐term
average for two to three decades.
The climatic fingerprints of
the PDO were most visible in
the North Pacific/North
American sector.

PSD Mantua et al. [1997]

PNA (Pacific North
American Index)

Leading eigenvector from
a rotated PCA based
on the 700 hPa height
field in the North Pacific

A major mode of atmospheric
variability North America
during the Northern Hemisphere
winter. The index is a function
of the phase and intensity
of quasi stationary Rossby
waves over North America
and a good indicator of the
mean location of the polar
front jet during colder months.

CPC Wallace and Gutzler [1981]

QBO (Quasi‐Biennial
Oscillation)

Zonal average of the
30 mbar zonal wind
at the equator

The QBO is a quasiperiodic
oscillation of the equatorial
zonal wind between easterlies
and westerlies in the tropical
stratosphere with a mean
period of 28 to 29 months.

PSD Holton and Lindzen [1972]

aCPC, NOAA Climate Prediction Center; PSD, NOAA Physical Sciences Division.
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Figure 1. Spearman’s rank correlation coefficients between seasonal climate indices and (a) annual
gross ecosystem exchange (GEE), (b) annual net ecosystem exchange (NEE), and (c) annual respiration
(R) at Harvard Forest. Orange stars represent that the correlations are significant at the 95% confidence
level.

Table 3. Composite Analysis of CO2 Exchange Between Five Strongest and Five Weakest Index Yearsa

Strongest Mean (m mol m−2 s−1) Weakest Mean (m mol m−2 s−1) Difference (m mol m−2 s−1)

GEE
Fall AMO −4.22 (1999, 2002, 2004, 2006, 2007) −3.41 (1992, 1993, 1994, 1995, 1997) −0.81b
Winter AMO −3.96 (1999, 2000, 2005, 2006, 2007) −3.64 (1992, 1993, 1994, 1998, 2001) −0.32
Winter EP/NP −3.59 (1993, 1994, 1995, 1996, 2003) −4.13 (1999, 2000, 2001, 2002, 2006) 0.54b

Spring MEI −3.37 (1992, 1993, 1995, 1998, 2005) −4.02 (1996, 1999, 2000, 2001, 2006) 0.65b

Spring PDO −3.62 (1993, 1996, 1998, 2003, 2005) −4.11 (1999, 2000, 2001, 2002, 2007) 0.49b

NEE
Fall AMO −1.03 (1999, 2002, 2004, 2006, 2007) −0.51 (1992, 1993, 1994, 1995, 1997) −0.52b
Winter AMO −1.03 (1999, 2000, 2005, 2006, 2007) −0.58 (1992, 1993, 1994, 1998, 2001) −0.45
Fall AO −0.96 (1999, 2001, 2002, 2004, 2005) −0.62 (1995, 1996, 1998, 2003, 2007) −0.34
Fall EP−NP −0.68 (1992, 1993, 1994, 2000, 2007) −1.03 (1995, 1997, 1998, 2002, 2004) 0.26
Fall PDO −0.46 (1994, 1995, 1998, 2002, 2007) −0.79 (1992, 1993, 1996, 1999, 2000) 0.33b

R
Fall MEI 2.77 (1995, 1996, 1998, 2000, 2004) 3.23 (2001, 2002, 2003, 2005, 2006) −0.47b
Fall PNA 3.31 (1992, 1995, 1997, 2004, 2007) 2.76 (1996, 1999, 2000, 2001, 2002) 0.55b

Spring PNA 2.80 (1995, 1996, 2002, 2006, 2007) 3.28 (1992, 1993, 1994, 1997, 2004) −0.48
aStrongest mean: the mean of GEE, NEE, and R in 5 strongest index years. Weakest mean: the mean of GEE, NEE, and R in 5 weakest index years.

Difference: composite difference between the mean of GEE, NEE, and R in 5 strongest and 5 weakest index years (i.e., strong minus weak index years).
bValues represent that differences between strongest and weakest mean are significant at the >95% confidence level tested by Student’s t test.
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used to regress the annual NEE. Similarly, we retain the fall
MEI and PNA, but remove the spring PNA for regressing
the annual R. The analysis implies that for the annual GEE,
the large‐scale circulation patterns are important for all
seasons except summer, but for the annual NEE and R, only
the fall large‐scale circulation patterns are significant.

3.2. Relationships Between Large‐Scale Circulation
Patterns and Surface Climate

[15] We first examine regional atmospheric circulation
and surface climate features associated with the global cli-
mate indices which have significant correlations with the
annual GEE, NEE, and R (see the auxiliary material).1 The
results suggest that these global climate indices can modify
regional atmospheric circulation patterns, thus influencing
New England surface climate and ecosystems. We further
examine the relationships between these global climate
indices and several key climate factors that control inter-
annual variability of the CO2 exchange at Harvard Forest.
Fall AMO can modify fall mean daily maximum (r = 0.53,
p < 0.04), minimum (r = 0.8, p < 0.002) and average (r =
0.67, p < 0.01) temperatures at Harvard Forest. Addition-
ally, the fall AMO is found to influence the annual mean
daily minimum temperature (r = 0.64, p < 0.01) and fall
precipitation (r = 0.55, p < 0.03). Spring MEI is suggested
to influence the fall mean daily minimum temperature (r =
−0.39, p < 0.13) to some degree. In addition, the fall
PNA is found to be linked to spring mean daily maximum
temperature (r = 0.36, p < 0.16).
[16] The negative (positive) phase of the winter EP‐NP

pattern which is associated with an enhanced cyclonic
(anticyclonic) circulation over the northeast United States, is
followed by smaller (larger) winter precipitation (r = 0.52,
p < 0.05) at Harvard Forest. Fall PDO (r = 0.60, p < 0.02)
and MEI (r = 0.42, p < 0.10) are positively correlated with
winter precipitation. In addition, significant correlations
between the spring PDO (r = −0.65, p < 0.01) and the fall
AMO (r = 0.54, p < 0.04) and the annual PAR at Harvard
Forest suggest that the two climate indices can largely
influence the PAR. In section 3.3, we further look at how the
surface climate affects CO2 exchange at Harvard Forest.

3.3. Relationships Between Surface Climate and CO2

Exchange

[17] Temperature, water, and radiation are main abiotic
controls of CO2 exchange [Boisvenue and Running, 2006].
Table 4 shows Spearman’s rank correlations between tem-
perature and the annual NEE, GEE, and R at Harvard Forest.

The annual NEE and GEE are sensitive to spring and summer
mean daily minimum temperatures, and fall mean daily
maximum, minimum and average temperatures. Goulden
et al. [1996] demonstrated that large changes in the annual
GEE are associated with modest changes in the length of the
growing season. The length of the growing season is linked
to the timing of leaf expansion and senescence, which is
regulated by surface air temperature in spring and fall [e.g.,
Goulden et al., 1996; Piao et al., 2008]. It is noted that
the minimum air temperatures during spring, summer, fall
and the growing season play a critical role in controlling the
annual GEE and NEE at Harvard Forest. In addition, the
CO2 uptake at Harvard Forest is particularly sensitive to fall
air temperatures. Fall temperature has significantly increased
(13.37%) since 1999, whereas spring (5.60%) and summer
(6.45%) air temperatures experienced relatively smaller
increases. The fall warming could subsequently enhance
CO2 uptake (the annual GEE and NEE have increased 21.54
and 103.98%, respectively, since 1999) by a longer growing
season and greater photosynthetic activity [Zhou et al.,
2001; Churkina et al., 2005]. On the other hand, Table 4
shows that the annual R is partly controlled by summer
mean daily minimum temperature (r = 0.36, p < 0.17).
[18] Previous studies have found that the annual gross

CO2 uptake at Harvard Forest is particularly sensitive to the
snow, rather than the annual precipitation [e.g., Goulden
et al., 1996]. Since we only have snow depth records from
1992 to 2001 available, instead we use the averaged winter
(November through March) precipitation records from 1992
to 2007 to explore the snow cover–CO2 exchange link.
Table 5 shows Spearman’s rank correlations between sea-
sonal precipitation and the annual NEE, GEE, and R at
Harvard Forest. The results show that the winter precipita-
tion is positively correlated with the annual GEE and NEE,
and negatively correlated with the annual R. Spring and
summer precipitation generally have small effects on the
annual GEE, NEE and R.
[19] All biological activity in plants is ultimately depen-

dent on absorbed solar radiation, even though the solar
radiation alone does not determine the primary productivity
[Boisvenue and Running, 2006]. The PAR is radiation used
by plant for photosynthesis and is important in evaluating
the effect of light on plant growth. The GEE is widely noted
to increase systematically with incident PAR, and thus is
usually specified as a function of PAR [e.g., Wofsy et al.,
1993; Xiao et al., 2004]. During the study period, the annual
NEE and GEE are found to generally have significant and
negative correlations with spring, summer, fall, and the
entire growing season PAR, indicating that the higher PAR
favors more NEE and GEE (Table 6; note that by conven-
tion, uptake of CO2 from the atmosphere has negative sign

Table 4. Spearman’s Rank Correlation Coefficients, and p Values, Between Temperature and Annual Net Ecosystem Exchange (NEE),
Gross Ecosystem Exchange (GEE), and Respiration (R) During the Period of 1992–2007a

Spring max Spring min Spring Summer max Summer min Summer Fall max Fall min Fall

NEE −0.11 (0.68) −0.50 (0.05) −0.26 (0.32) −0.04 (0.90) −0.6 (0.02) −0.14 (0.59) −0.51 (0.05) −0.73 (0.01) −0.71 (0.01)
GEE −0.11 (0.69) −0.48 (0.06) −0.27 (0.30) 0.05 (0.84) −0.7 (0.01) −0.21 (0.42) −0.31 (0.24) −0.71 (0.01) −0.44 (0.09)
R 0.02 (0.95) 0.05 (0.85) −0.01 (0.99) −0.05 (0.85) 0.36 (0.17) 0.11 (0.67) −0.02 (0.93) 0.32 (0.22) 0.02 (0.96)

aSpring max and Spring min represent the maximum and minimum surface air temperature in spring, respectively. Summer max and Summer min represent
the maximum and minimum surface air temperature in summer, respectively. Fall max and Fall min represent the maximum and minimum surface air
temperature in fall, respectively. Bold values denote that correlations are significant at the >90% confidence level.

1Auxiliary materials are available in the HTML: doi:10.1029/
2010JD014738.
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in this study). This conclusion is in agreement with that from
previous studies.
[20] This study identifies the statistical relationships

between CO2 exchange and global climate indices, and dis-
cusses possible physical processes linking these phenomena.
However, we realize that a comprehensive understanding of
the physical mechanisms involved is impossibly reached
through the statistical analysis. Further investigations are
clearly needed to clarify the related physical mechanisms.

3.4. Regression Analysis

[21] Regressions based on these global climate indices
which have robust relationships with the annual GEE, NEE,
and R are developed to simulate their interannual variations.
However, during the study period, the four global climate
indices of springMEI and PDO, fall AMO andwinter EP‐NP,
all of which impact the annual GEE are highly correlated to
one another (Table 7). Also, the two indices of fall MEI and
PNA, associated with the annual R, are highly correlated
to each other (r = −0.51, p ≤ 0.05). We therefore use a
regression analysis called principal components analysis
(PCA) to avoid problems of multicollinearity [Kutner et al.,
2004]. For the annual GEE, instead of regressing highly
correlated PDO, MEI, AMO and EP‐NP directly, we cal-
culate four principal components which are uncorrelated,
each component being a linear combination of the correlated
four climate indices. The first principal component (PC‐1)
explains 69.41% of the total variance in the four indices. We
use the broken‐stick distribution to evaluate the significance
of the PC‐1, whose criterion is one of the most reliable to
check the significance of PCA axes [e.g., Peres‐Neto et al.,
2003]. The broken‐stick method is based on eigenvalues
from random data, and assumes that if the total variance (i.e.,
sum of the eigenvalues) is divided randomly among the
various components, then the expected distribution of the
eigenvalues will follow a broken‐stick distribution [Frontier,
1976; Jackson, 1993]. Result shows that the PC‐1 with a
larger percentage of variance than the broken‐stick variance
(52.08%) is significant [Legendre and Legendre, 1998].

Therefore, we select the PC‐1 as a new index called the
“Composite Index for GEE” (CIGEE) to represent changes in
the four climate indices. Similarly, for R, the first principal
component (PC‐1) explains 77.19% of the total variance in
the fall AMO and PNA, which is larger than the broken‐stick
variance (75%). We select the PC‐1 as another new index
called the “Composite Index for R” (CIR) to represent chan-
ges in the two climate indices. The PCA is not applied to the
fall AMO and PDO associated with the annual NEE since
they are not significantly correlated to each other (r = −0.31,
p < 0.23). Instead, we directly regress the two climate indices
to simulate the annual NEE.
[22] Figure 2 shows that CIGEE is highly correlated with

the fall AMO (R2 = 0.39), the winter EP‐NP (R2 = 0.55), and
the spring MEI (R2 = 0.78) and PDO (R2 = 0.71). Winter
EP‐NP, spring MEI and PDO and CIGEE are found to mostly
have the same signs, and fall AMO and CIGEE mostly have
the opposite signs (Table 8). Those indicate that the new
index is a well‐defined property of the four climate indices.
Table 9 shows that changes of CIR and fall MEI are com-
pletely in phase. CIR exhibits a very high correlation with
the fall MEI (R2 = 0.97), while it has a much weaker but still
significant (R2 = 0.27, p < 0.05) relationship with the fall
PNA. Here we develop empirical prediction models to pre-
dict the annual mean GEE, NEE and R based on CIGEE, fall
AMO and PDO, and CIR using linear regressions for the
period of 1992–2007,

GEE ¼ �3:82þ 0:27CIGEE; ð1Þ

NEE ¼ �0:65� 0:94AMOfall þ 0:06PDOfall ; ð2Þ

R ¼ 3:05� 0:21CIR: ð3Þ

Figure 3 shows the observed and predicted annual GEE,
NEE, and R at Harvard Forest for the period of 1992 to 2007.
The prediction of annual NEE is based on the fall AMO and
PDO, while the prediction of annual GEE and annual R are
based on CIGEE and CIR, respectively. Using a terrestrial
ecosystem model (IBIS2), Urbanski et al. [2007] found that
the decadal trend in the interannual variations of NEE and
GEE cannot be predicted well. In this study, the CIGEE can

Table 6. Spearman’s Rank Correlation Coefficients, and p Values,
Between Photosynthetically Active Radiation (PAR) and Annual
Net Ecosystem Exchange (NEE), Gross Ecosystem Exchange
(GEE), and Respiration (R) During the Period of 1992–2007a

Spring
(Apr–May)

Summer
(Jun–Aug)

Fall
(Sep–Oct) Growing Season

NEE −0.45 (0.08) −0.44 (0.09) −0.43 (0.10) −0.47 (0.07)
GEE −0.35 (0.18) −0.49 (0.06) −0.55 (0.04) −0.47 (0.07)
R 0.07 (0.78) 0.32 (0.21) 0.25 (0.33) 0.10 (0.72)

aBold values denote that correlations are significant at the >90%
confidence level.

Table 7. Correlation Coefficients, and p Values, of the Four Cli-
mate Indices Linked to Annual Gross Ecosystem Exchange (GEE)

Fall AMO Winter EP‐NP Spring MEI Spring PDO

Fall AMO 1
Winter EP‐NP −0.58 (0.03) 1
Spring MEI −0.52 (0.04) 0.62 (0.02) 1
Spring PDO −0.44 (0.09) 0.77 (0.003) 0.58 (0.03) 1

Table 5. Spearman’s Rank Correlation Coefficients, and p Values, Between Precipitation and Annual Net Ecosystem Exchange (NEE),
Gross Ecosystem Exchange (GEE), and Respiration (R) During the Period of 1992–2007a

Winter (Nov–Mar) Spring (Apr–May) Summer (Jun–Aug) Fall (Sep–Oct)

NEE 0.66 (0.01) −0.38 (0.14) −0.18 (0.48) −0.52 (0.04)
GEE 0.69 (0.01) −0.36 (0.16) 0.02 (0.96) 0.17 (0.51)
R −0.39 (0.13) 0.14 (0.60) −0.21 (0.43) −0.13 (0.62)

aWinter precipitation is defined from November of the prior year through March of the listed year. Bold values denote that correlations are significant at
the >90% confidence level.
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simulate the interannual variability of the annual GEE to a
large degree, explaining 41% of the total variance. Moreover,
it can capture the observed decadal change. From 1992
through 1998, CIGEE are mostly in positive phases with
corresponding smaller annual GEE. Since 1999, CIGEE are
mostly in negative phases and associated with increased GEE
compared to the 1992–1998 average (Table 8). Should cur-
rent negative CIGEE conditions persist into the upcoming
decade, we suggest that higher GEE at Harvard Forest will
continue compared with the 1992–1998 average. Forty per-
cent of the variance of the annual NEE can be captured by
the fall AMO and PDO. Also, consistent decadal changes in
both observed and predicted annual NEE are demonstrated.
These results suggest that the two climate indices can play an
important role in influencing both interannual variability and

decadal change of the annual NEE. TheCIR accounts for 27%
of the variance of the annual R, which is lower relative to the
explained variances of the annual GEE and NEE by CIGEE,
and the fall AMO and PDO. Further analysis indicates that the
annual R varies consistently with CIR before 2001. However,
since then, changes of observed and predicted annual R
appear, to a large extent, to be out of phase. Therefore, we
split the annual R time series into two groups (1992 to 2000
and 2001 to 2007), and then examine their relationships with
CIR (Figure 4). CIR exhibits a strong relationship with annual
R (R2 = 0.59) during the period of 1992 to 2000. In contrast,
it poorly captures the observed annual R (R2 = 0.19) during
the period of 2001 to 2007. This reason leading the relative
weak dependence of annual R on the CIR since 2001 is still
unclear, and needs to be further investigated.

Figure 2. The relationship between “Composite Index for GEE (CIGEE)” and (a) fall AMO, (b) winter
EP‐NP, (c) spring MEI, and (d) spring PDO. CIGEE is a linear combination of the four global climate
indices.

Table 8. The Phase Signs of Fall AMO, Winter EP‐NP, Spring MEI and PDO, and CIGEE, and the Frequency of Same and Opposite
Signs of Two Climate Indices and CIGEE During 1992 to 2007a

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 Frequency

Fall AMO −a −a −a −a +a −a + +a +a +a +a + +a + +a +a 13 (81.25%)
Winter EP−NP +b +b +b +b + +b +b −b −b −b −b +b + +b −b −b 14 (87.50%)
Spring MEI +b +b +b +b −b +b +b −b −b −b + +b + +b −b + 13 (81.25%)
Spring PDO +b +b +b +b + +b +b −b + −b −b +b + +b + −b 12 (75%)
CIGEE + + + + − + + − − − − + − + − −

aThe climate index and CIGEE have opposite signs.
bThe climate index and CIGEE have same signs.
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[23] This study demonstrates that large‐scale circulation
patterns play an important role in influencing interannual
variability of GEE, NEE, and R at Harvard Forest, accounting
for 27–41% of the total variances. In addition to the large‐
scale circulation patterns, the surface climate in the northeast
United States can also be affected by other processes. For
example, land‐atmosphere interactions can exert impacts on
the interannual surface climate variability in the northeast
United States [e.g., Freedman et al., 2001; Notaro et al.,
2006b; Zhang et al., 2008], thus affecting the interannual
variability of CO2 exchange at Harvard Forest. In addition to
the climate‐related factors, other possible factors for the
interannual variability of CO2 exchange at Harvard Forest
include CO2 fertilization, nitrogen deposition, forest com-
position species, and disturbance (e.g., forest regrowth, forest
harvesting and pets and fire suppression) [e.g., Houghton
et al., 1999; Caspersen et al., 2000; Schimel et al., 2000,
2001; Albani et al., 2006; Ollinger et al., 2008a]. Previous
studies have shown that CO2 fertilization has a significant
impact on rates of CO2 uptake at Harvard Forest [e.g.,
Albani et al., 2006; Ollinger et al., 2008b]. Nitrogen as a
regulator of C assimilation is well established, and the

availability of nitrogen may play a role in influencing inter-
annual variability of CO2 exchange at Harvard Forest [e.g.,
Aber et al., 1998; Ollinger et al., 2008a]. Moreover, some
studies attribute changes in CO2 exchange at Harvard Forest
in part to increased dominance of red oak, which has a higher
photosynthetic efficiency compared to red maple, and devel-
opment of denser canopy and increased nutrient uptake due to
warmer early spring periods, contributing to an increase in
maximum photosynthetic rates in midsummer [Urbanski
et al., 2007; Munger, 2009].

3.5. Application of the Methodology to Other Sites

[24] In sections 3.1–3.4, CO2 exchange at Harvard Forest
is found to be closely linked to the large‐scale circulation
patterns, and we further develop the empirical prediction
models to predict GEE, NEE, and R based on their relation-
ships with global climate indices. In this section, we further
test the applicability of the methodology using long‐term
measurements of CO2 exchange at other two sites: Howland
Forest and Morgan Monroe AmeriFlux research sites. We
choose the two sites for the present analysis because they
both have gap‐filled CO2 flux data covering more than

Table 9. The Phase Signs of Fall MEI and PNA and CIR, and the Frequency of Same and Opposite Signs of Two Climate Indices and
CIR During 1992 to 2007a

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 Frequency

Fall MEI +a +a +a +a −a −a +a −a −a −a −a +a +a +a −a +a 16 (100%)
Fall PNA −b −b −b −b +b − + +b +b − +b + + −b +b −b 11 (68.75%)
CIR + + + + − − + − − − − + + + − +

aThe climate index and CIR have same signs.
bThe climate index and CIR have opposite signs.

Figure 3. Observed and predicted (a) annual gross ecosystem exchange (GEE), (b) annual net ecosystem
exchange (NEE), and (c) annual respiration (R) at Harvard Forest.
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10 years. Here, we focus on the relationships between large‐
scale circulation patterns and the annual NEE.
[25] The annual NEE at Howland Forest is inversely

correlated with winter NAO (r = −0.69, p < 0.02), spring
AMO (r = −0.54, p < 0.06) and PNA (r = −0.49, p < 0.09).
The three global climate indices are not significantly cor-
related to one another, we therefore develop an empirical
model based on the indices to predict the annual NEE using
a linear regression,

NEE ¼ �0:58� 0:16NAOwinter � 0:25AMOspring � 0:07PNAspring:

ð4Þ

Figure 5 shows the observed and predicted annual NEE at
Howland Forest for the period of 1996 to 2008. More than
half (55%) of the variance in the annual NEE is attributable
to the three global climate indices.
[26] The annual NEE at Morgan Monroe State Forest is

negatively correlated with fall and winter (September through
February) AMO (r = −0.67, p < 0.03), and fall AO (r = −0.53,
p < 0.10). The two indices are not significantly correlated

(r = 0.25, p < 0.45). The empirical model based on the two
indices using a linear regression to predict the annual NEE is
as follows:

NEE ¼ �0:82� 0:70AMOfall�winter � 0:11AOfall : ð5Þ

Figure 6 shows the observed and predicted NEE at Morgan
Monroe State Forest during 1998 to 2008. The two indices
can simulate the interannual variability of the annual NEE
well, together explaining 58% of the total variance.
[27] The above results show that global climate indices

account for more than half of the total NEE variances at
Howland Forest and Morgan Monroe State Forest, indicat-
ing that large‐scale circulation patterns play a leading role in
influencing the interannual variability of the annual NEE at
the two forests. Combined with the results from Harvard
Forest, the large‐scale circulation patterns consistently show
a strong link with the annual NEE, and provide the potential
as predictors for forest NEE at the three sites. All summer
global climate indices are not significantly related to the

Figure 5. Observed and predicted annual net ecosystem exchange (NEE) at Howland Forest.

Figure 4. Scatterplots of annual respiration (R, mmol m−2 s1) and “Composite Index for Respiration”
(CIR) during the period of (a) 1992 to 2000 and (b) 2001 to 2007.

ZHANG ET AL.: CLIMATIC INDICES AND CO2 EXCHANGE LINKS D04102D04102

10 of 13



annual NEE at the three sites. In addition, the annual NEE at
the three sites is all inversely correlated with the AMO.
[28] Except for the AMO, the annual NEE at the three

sites are linked to other different global climate indices.
Several reasons may be responsible for the differences. The
large‐scale circulation patterns have different effects on
climate at the three sites due to their different geographic
location (Table 1), and CO2 exchange responds differen-
tially with respect to latitude and climatic variations [e.g.,
Nemani et al., 2003; Gong and Ho, 2003; Notaro et al.,
2006a; Hember and Lafleur, 2008; Grant et al., 2009;
Wharton et al., 2009]. Another possible reason is that the
three AmeriFlux research sites have different forest compo-
sition species, which affects the response of CO2 exchange
to the climate [e.g., Hadley et al., 2009; Richardson et al.,
2009]. In this study, the annual NEE of deciduous‐
dominated Harvard Forest and Morgan Monroe State Forest
exhibits significant correlations with climate indices in fall,
while conifer‐dominated Howland Forest NEE is closely
linked to climate indices in winter and spring. Other char-
acteristics of sites such as hydrological conditions, topog-
raphy, disturbance, nutrient, and measurement errors may
also introduce some differences [Hember and Lafleur, 2008;
Grant et al., 2009; Hadley et al., 2009]. Moreover, the study
periods for the three sites are different, but in all cases, the
data length is short. The short data length implies that
the uncertainty may be relatively large, so our results are
subject to the study period.

4. Conclusions

[29] Long‐term measurements (1992–2007) of CO2 flux at
Harvard Forest provide an excellent opportunity to investi-
gate the responses of this ecosystem to large‐scale circulation
patterns. Using spearman’s rank correlation and composite
analysis, the relationships between the annual CO2 exchange
variations and large‐scale circulation patterns are identified.
We find that the annual GEE is significantly related with the
fall AMO, the winter EP‐NP, the spring MEI and PDO. The
annual NEE shows strong links with the fall AMO and PDO,
and the annual R is associated with the fall MEI and PNA.
[30] We further discuss possible physical processes respon-

sible for the global climate indices– CO2 exchange links.
The regional circulation patterns are found to be closely
related to global climate indices which show robust re-

lationships with the GEE, NEE, and R at Harvard Forest.
Surface climate factors including precipitation, temperature,
and radiation determine interannual variability of the annual
CO2 exchange in the forest. We suggest that changes in
large‐scale patterns, through modification of regional circu-
lation features over the northeast United States, can influ-
ence one or more surface climatic factors. Due to the
relatively short observational record, the statistical signifi-
cance cannot always be judged at the 95% confidence level.
Further investigations are clearly needed to clarify the un-
certainties and the related physical mechanisms.
[31] Regressions based on these climate indices are

developed to simulate the annual GEE, NEE andR. However,
the four climate indices associated with annual GEE are
highly correlated to each other, and the two indices associated
with the annual R also exhibit high degree of correlation.
Therefore, instead of regressing highly correlated climate
indices directly, we compute two new indices (CIGEE and
CIR) based on their linear combination to avoid the problems
of multicollinearity. The two new indices can account for
41% and 27% of the total variance in the annual GEE and R,
respectively. On the other hand, the fall AMO and PDO
contribute to 40% of the total variance in the annual NEE. The
methodology is further applied to other two AmeriFlux sites
that both have more than 10 years of CO2 flux records
available. The global climate indices are found to make a
dominant contribution to the interannual NEE variability at
the two sites. The results together with that of Harvard Forest
suggest that the global climate indices have the potential as
predictors for northern midlatitude forest CO2 exchange.

[32] Acknowledgments. We would like to thank the following prin-
cipal investigators for their hard work and dedication to collection and
archiving of these data: J. William Munger and Steven Wofsy (Harvard
Forest), David Hollinger (Howland Forest), and Danilo Dragoni (Morgan
Monroe State Forest). We are also grateful to two anonymous reviewers,
whose insightful comments and constructive criticism help to significantly
improve the paper. The work was supported by the “100‐talent program” of
the Chinese Academy of Sciences, the special fund for President’s prize of
the Chinese Academy of Sciences, and National Basic Research Program
(2009CB21405).

References
Aber, J. D., W. H. McDowell, K. J. Nadelhoffer, A. Magill, G. Berntson,
M. Kamakea, S. G. McNulty, W. Currie, L. Rustad, and I. Fernandez

Figure 6. Observed and predicted annual net ecosystem exchange (NEE) at Morgan Monroe State Forest.

ZHANG ET AL.: CLIMATIC INDICES AND CO2 EXCHANGE LINKS D04102D04102

11 of 13



(1998), Nitrogen saturation in temperate forest ecosystems: Hypotheses
revisited, BioScience, 48, 921–934, doi:10.2307/1313296.

Albani, M., et al. (2006), The contributions of land‐use change, CO2 fertil-
ization, and climate variability to the Eastern US carbon sink, Global
Change Biol., 12, 2370–2390, doi:10.1111/j.1365-2486.2006.01254.x.

Baldocchi, D. D. (2003), Assessing the eddy‐covariance technique for eval-
uating the carbon dioxide exchange rates of ecosystems: Past, present and
future, Global Change Biol., 9, 479–492, doi:10.1046/j.1365-
2486.2003.00629.x.

Barford, C. C., et al. (2001), Factors controlling long‐ and short‐term
sequestration of atmospheric CO2 in a mid‐latitude Forest, Science,
294, 1688–1691, doi:10.1126/science.1062962.

Barnston, A. G., and R. E. Livezey (1987), Classification, seasonality and
persistence of low‐frequency atmospheric circulation patterns, Mon.
Weather Rev., 115, 1083–1126, doi:10.1175/1520-0493(1987)
115<1083:CSAPOL>2.0.CO;2.

Battle, M., M. L. Bender, P. P. Tans, J. W. C. White, J. T. Ellis, T. Conway,
and R. J. Francey (2000), Global carbon sinks and their variability
inferred from atmospheric O2 and d13C, Science, 287, 2467–2470,
doi:10.1126/science.287.5462.2467.

Bell, G. D., and J. E. Janowiak (1995), Atmospheric circulation associated
with the Midwest floods of 1993, Bull. Am. Meteorol. Soc., 76, 681–695,
doi:10.1175/1520-0477(1995)076<0681:ACAWTM>2.0.CO;2.

Boisvenue, C., and S. W. Running (2006), Impacts of climate change on nat-
ural forest productivity‐evidence since the middle of the 20th century,
Global Change Biol., 12, 862–882, doi:10.1111/j.1365-2486.2006.01134.x.

Bradbury, J. A., B. D. Keim, and C. P. Wake (2002), U.S. east coast trough
indices at 500 hPa and New England winter climate variability, J. Clim.,
15, 3509–3517, doi:10.1175/1520-0442(2002)015<3509:USECTI>2.0.
CO;2.

Budikova, D. (2005), Impact of the Pacific Decadal Oscillation on relation-
ships between temperature and the Arctic Oscillation in the USA in win-
ter, Clim. Res., 29, 199–208, doi:10.3354/cr029199.

Caspersen, J., et al. (2000), Contributions of land‐use history and
enhanced tree growth to carbon accumulation in US forests, Science,
290, 1148–1151, doi:10.1126/science.290.5494.1148.

Churkina, G., D. Schimel, B. H. Braswell, andX.M. Xiao (2005), Spatial anal-
ysis of growing season length control over net ecosystem exchange, Global
Change Biol., 11, 1777–1787, doi:10.1111/j.1365-2486.2005.001012.x.

Dunn, A. L., C. C. Barford, S. C. Wofsy, M. L. Goulden, and B. C. Daube
(2007), A long‐term record of carbon exchange in a boreal black spruce for-
est: Means, responses to interannual variability, and decadal trends, Global
Change Biol., 13, 577–590, doi:10.1111/j.1365-2486.2006.01221.x.

Enfield, D. B., A. M. Mestas‐Nuñez, and P. J. Trimble (2001), The Atlantic
Multidecadal Oscillation and its relation to rainfall and river flows in the
continental U.S., Geophys. Res. Lett., 28, 2077–2080, doi:10.1029/
2000GL012745.

Freedman, J. M., D. R. Fitzjarrald, K. E. Moore, and R. K. Sakai (2001),
Boundary layer clouds and vegetation‐atmosphere feedbacks, J. Clim.,
14, 180–197, doi:10.1175/1520-0442(2001)013<0180:BLCAVA>2.0.
CO;2.

Frontier, S. (1976), Study of the decrease of eigenvalues in principal com-
ponent analysis: Comparison with the broken stick model, J. Exp. Mar.
Biol. Ecol., 25, 67–75, doi:10.1016/0022-0981(76)90076-9.

Goldstein, A., et al. (2000), Effects of climate variability on the carbon
dioxide, water and sensible heat fluxes above a ponderosa plantation
in the Sierra Nevada (CA), Agric. For. Meteorol., 101, 113–129,
doi:10.1016/S0168-1923(99)00168-9.

Gong, D.‐Y., and C.‐H. Ho (2003), Detection of large‐scale climate signals
in spring vegetation index (normalized difference vegetation index)
over the Northern Hemisphere, J. Geophys. Res., 108(D16), 4498,
doi:10.1029/2002JD002300.

Goulden, M. L., J. W. Munger, S. M. Fan, B. C. Daube, and S. C. Wofsy
(1996), Effects of interannual climate variability on the carbon dioxide
exchange of a temperate deciduous forest, Science, 271, 1576–1578,
doi:10.1126/science.271.5255.1576.

Grant, R. F., A. G. Barr, T. A. Black, H. A. Margolis, A. L. Dunn,
J. Metsaranta, S. Wang, J. H. McCaughey, and C. A. Bourque (2009),
Interannual variation in net ecosystem productivity of Canadian forests as
affected by regional weather patterns—A Fluxnet‐Canada synthesis, Agric.
For. Meteorol., 149, 2022–2039, doi:10.1016/j.agrformet.2009.07.010.

Graumlich, L. J., L. B. Brubaker, and C. C. Grier (1989), Long‐term trends
in forest net primary productivity—Cascade Mountains, Washington,
Ecology, 70, 405–410, doi:10.2307/1937545.

Griffiths, M., and R. S. Bradley (2007), Variations of twentieth‐century
temperature and precipitation extreme indicators in the northeast United
States, J. Clim., 20, 5401–5417, doi:10.1175/2007JCLI1594.1.

Hadley, J. L., J. O’Keefe, J. W. Munger, D. Y. Hollinger, and A. D.
Richardson (2009), Phenology of forest‐atmosphere carbon exchange for

deciduous and coniferous forests in southern and northern New England:
Variation with latitude and landscape position, in Phenology of Ecosystem
Processes, pp. 119–141, Springer, New York, doi:10.1007/978-1-4419-
0026-5_5.

Hanson, P., et al. (2004), Oak forest carbon and water simulations: Model
intercomparisons and evaluations against independent data, Ecol.
Monogr., 74, 443–489, doi:10.1890/03-4049.

Hember, R., and P. Lafleur (2008), Effects of serial dependence and large‐
scale tropospheric circulation on midlatitude North American terrestrial car-
bon dioxide exchange, J. Clim., 21, 751–770, doi:10.1175/2007JCLI1718.1.

Hollinger, D. Y., S. M. Goltz, E. A. Davidson, J. T. Lee, K. Tu, and H. T.
Valentine (1999), Seasonal patterns and environmental control of carbon
dioxide and water vapour exchange in an ecotonal boreal forest, Global
Change Biol., 5, 891–902, doi:10.1046/j.1365-2486.1999.00281.x.

Hollinger, D. Y., et al. (2004), Spatial and temporal variability in forest‐
atmosphere CO2 exchange, Global Change Biol., 10, 1689–1706,
doi:10.1111/j.1365-2486.2004.00847.x.

Holton, J. R., and R. S. Lindzen (1972), An updated theory for the Quasi‐
Biennial cycle of the tropical stratosphere, J. Atmos. Sci., 29, 1076–1080,
doi:10.1175/1520-0469(1972)029<1076:AUTFTQ>2.0.CO;2.

Houghton, R. A. (2000), Interannual variability in the global carbon cycle,
J. Geophys. Res., 105(D15), 20,121–20,130, doi:10.1029/2000JD900041.

Houghton, R. A., J. L. Hackler, and K. T. Lawrence (1999), The US carbon
budget: Contributions from land‐use change, Science, 285, 574–578,
doi:10.1126/science.285.5427.574.

Hui, D., Y. Luo, and G. Katul (2003), Partitioning interannual variability in
net ecosystem exchange between climatic variability and functional
change, Tree Physiol., 23, 433–442.

Hurrell, J. W. (1995), Decadal trends in the North Atlantic Oscillation:
Regional temperatures and precipitation, Science, 269, 676–679,
doi:10.1126/science.269.5224.676.

Hurrell, J. W. (1996), Influence of variations in extratropical wintertime tele-
connections onNorthernHemisphere temperature,Geophys. Res. Lett., 23,
665–668, doi:10.1029/96GL00459.

Jackson, D. A. (1993), Stopping rules in principal components analysis:
A comparison of heuristical and statistical approaches, Ecology, 74,
2204–2214, doi:10.2307/1939574.

Keeling, R. F., C. P. Stephen, and M. Heimann (1996), Global and hemi-
spheric CO2 sinks deduced from changes in atmospheric CO2 concentra-
tion, Nature, 381, 218–221, doi:10.1038/381218a0.

Kunkel, E. K., et al. (2009), Trends in twentieth‐century U.S. extreme snow-
fall seasons, J. Clim., 22, 6204–6216, doi:10.1175/2009JCLI2631.1.

Kutner, M. H., C. J. Nachtsheim, and J. Neter (2004), Applied Linear
Regression Models, 701 pp., McGraw‐Hill, New York.

Law, B. E. (2006), Carbon dynamics in response to climate and distur-
bance: Recent progress from multiscale measurements and modeling in
AmeriFlux, inPlant Responses to Air Pollution andGlobal Change, edited
by K. Omasa, I. Nouchi, and L. J. De Kok, pp. 205–213, Springer, Tokyo.

Leathers, D. J., B. Yarnal, and M. A. Palecki (1991), The Pacific/North
American teleconnection pattern and United States climate. Part I:
Regional temperature and precipitation associations, J. Clim., 4, 517–528,
doi:10.1175/1520-0442(1991)004<0517:TPATPA>2.0.CO;2.

Legendre, P., and L. Legendre (1998), Numerical Ecology, 2nd Engl. ed.,
Elsevier, New York.

Mantua, N., S. Hare, Y. Zhang, J. M. Wallace, and R. Francis (1997), A
Pacific interdecadal climate oscillation with impacts on salmon produc-
tion, Bull. Am. Meteorol. Soc., 78, 1069–1079, doi:10.1175/1520-0477
(1997)078<1069:APICOW>2.0.CO;2.

McCabe, G. J., M. A. Palecki, and J. L. Betancourt (2004), Pacific and Atlan-
tic ocean influences on multidecadal drought frequency in the United
States, Proc. Natl. Acad. Sci. U. S. A., 101, 4136–4141, doi:10.1073/
pnas.0306738101.

Morgenstern, K., et al. (2004), Sensitivity and uncertainty of the carbon
balance of Pacific Northwest Douglas‐fir forest during an El Niño–
La Niña cycle, Agric. For. Meteorol., 123, 201–219, doi:10.1016/j.
agrformet.2003.12.003.

Munger, J. W. (2009), 20 years of NEE measurements at the Harvard Forest
Environmental Measurement Site, paper presented at Harvard Forest
Symposium‐2009, Harvard Univ., Cambridge, Mass. (Available at
http://harvardforest.fas.harvard.edu/asp/hf/symposium/showsymposium.
html?id=745&year=2009)

Nemani, R. R., C. D. Keeling, H. Hashimoto, W. M. Jolly, S. C. Piper, C. J.
Tucker, R. B. Myneni, and S. W. Running (2003), Climate‐driven
increases in global terrestrial net primary production from 1982 to 1999,
Science, 300, 1560–1563, doi:10.1126/science.1082750.

Notaro, M., W. C. Wang, and W. Gong (2006a), Model and observational
analysis of the Northeast US regional climate and its relationship to the
PNA and NAO patterns during early winter, Mon. Weather Rev., 134,
3479–3505, doi:10.1175/MWR3234.1.

ZHANG ET AL.: CLIMATIC INDICES AND CO2 EXCHANGE LINKS D04102D04102

12 of 13



Notaro, M., Z. Liu, and J. W. Williams (2006b), Observed vegetation‐
climate feedbacks in the United States, J. Clim., 19, 763–786,
doi:10.1175/JCLI3657.1.

Ollinger, S. V., et al. (2008a), Canopy nitrogen, carbon assimilation, and
albedo in temperature and boreal forests: Functional relations and potential
climate feedbacks, Proc. Natl. Acad. Sci. U. S. A., 109, 19,335–19,340.

Ollinger, S. V., C. L. Goodale, K. Hayhoe, and J. P. Jenkins (2008b),
Potential effects of climate change and rising CO2 on ecosystem pro-
cesses in northeastern U.S. forests, Mitig. Adapt. Strategies Global
Change, 13, 467–485, doi:10.1007/s11027-007-9128-z.

Peres‐Neto, P. R., D. A. Jackson, and K. M. Somers (2003), Giving
meaningful interpretation to ordination axes assessing loading signifi-
cance in principal component analysis, Ecology, 84, 2347–2363,
doi:10.1890/00-0634.

Piao, S. L., et al. (2008), Net carbon dioxide losses of northern ecosystems
in response to autumn warming, Nature, 451, 49–52, doi:10.1038/
nature06444.

Richardson, A. D., D. Y. Hollinger, J. D. Aber, S. V. Ollinger, and B. H.
Braswell (2007), Environmental variation is directly responsible for short‐
but not long‐term variation in forest‐atmosphere carbon exchange,Global
Change Biol., 13, 788–803, doi:10.1111/j.1365-2486.2007.01330.x.

Richardson, A. D., D. Y. Hollinger, D. B. Dail, J. T. Lee, J. W. Munger,
and J. O’Keefe (2009), Influence of spring phenology on seasonal and
annual carbon balance in two contrasting New England forests, Tree
Physiol., 29, 321–331, doi:10.1093/treephys/tpn040.

Richman, M. B., P. J. Lamb, and J. R. Angel (1991), Relationships between
monthly precipitation over central and eastern North America and the
Southern Oscillation, paper presented at Fifth Conference on Climate
Variations, Am. Meteorol. Soc., Denver, Colo.

Ropelewski, C., and M. Halpert (1986), North American precipitation and
temperature patterns associated with the El Niño/Southern Oscillation
(ENSO), Mon. Weather Rev., 114, 2352–2362, doi:10.1175/1520-0493
(1986)114<2352:NAPATP>2.0.CO;2.

Schimel, D. S., et al. (2000), Contribution of increasing CO2 and climate
to carbon storage by ecosystems in the United States, Science, 287,
2004–2006, doi:10.1126/science.287.5460.2004.

Schimel, D. S., et al. (2001), Recent patterns and mechanisms of carbon
exchange by terrestrial ecosystems, Nature, 414, 169–172, doi:10.1038/
35102500.

Schmid, H. P., C. S. B. Grimmond, F. Cropley, B. Offerle, and H.‐B. Su
(2000), Measurements of CO2 and energy fluxes over a mixed hard-
wood forest in the mid‐western United States, Agric. For. Meteorol.,
103, 357–374, doi:10.1016/S0168-1923(00)00140-4.

Siqueira, M. B., et al. (2006), Multiscale model intercomparisons of CO2 and
H2O exchange rates in a maturing southeastern U.S. pine forest, Global
Change Biol., 12, 1189–1207, doi:10.1111/j.1365-2486.2006.01158.x.

Sobolowski, S., and A. Frei (2007), Lagged relationships between
North American snow mass and atmospheric teleconnection indices, Int.
J. Climatol., 27, 221–231, doi:10.1002/joc.1395.

Tans, P. P., I. Y. Fung, and T. Takahashi (1990), Observational contrains
on the global atmospheric CO2 budget, Science, 247, 1431–1438,
doi:10.1126/science.247.4949.1431.

Thompson, D. W. J., and J. M. Wallace (1998), The Arctic Oscillation
signature in the wintertime geopotential height and temperature fields,
Geophys. Res. Lett., 25, 1297–1300, doi:10.1029/98GL00950.

Thompson, D. W. J., M. P. Baldwin, and J. M. Wallace (2002), Strato-
spheric connection to Northern Hemisphere wintertime weather: Implica-
tions for prediction, J. Clim., 15, 1421–1428, doi:10.1175/1520-0442
(2002)015<1421:SCTNHW>2.0.CO;2.

Urbanski, S., C. Barford, S. Wofsy, C. Kucharik, E. Pyle, J. Budney,
K. McKain, D. Fitzjarrald, M. Czikowsky, and J. W. Munger (2007),
Factors controlling CO2 exchange on timescales from hourly to decadal
at Harvard Forest, J. Geophys. Res., 112, G02020, doi:10.1029/
2006JG000293.

Wallace, J. M., and D. S. Gutzler (1981), Teleconnections in the geopotential
height field during the North Hemispheric winter,Mon.Weather Rev., 109,
784–812, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

Wang, K., R. E. Dickinson, and S. Liang (2008), Observational evidence
on the effects of clouds and aerosols on net ecosystem exchange and
evapotranspiration, Geophys. Res. Lett., 35, L10401, doi:10.1029/
2008GL034167.

Wharton, S., L. Chaemer, M. Falk, and K. T. Paw U (2009), Strong links
between teleconnections and ecosystem exchange found at a Pacific North-
west old‐growth forest from flux tower and MODIS EVI data, Global
Change Biol., 15, 2187–2205, doi:10.1111/j.1365-2486.2009.01952.x.

Wofsy, S. C., et al. (1993), Net exchange of CO2 in a mid‐latitude forest,
Science, 260, 1314–1317, doi:10.1126/science.260.5112.1314.

Wolter, K., and M. S. Timlin (1993), Monitoring ENSO in COADS with a
seasonally adjusted principal component index, paper presented at 17th
Climate Diagnostics Workshop, NSSL, Norman, Okla.

Wolter, K., and M. S. Timlin (1998), Measuring the strength of ENSO
events: How does 1997/1998 rank?, Weather, 53, 315–324.

Xiao, X. M., D. Hollinger, J. Aber, M. Goltz, E. A. Davidson, Q. Y. Zhang,
and B. Moore III (2004), Satellite‐based modeling of gross primary produc-
tion in an evergreen needleleaf forest,Remote Sens. Environ., 89, 519–534,
doi:10.1016/j.rse.2003.11.008.

Zhang, J., W.‐C. Wang, and L. R. Leung (2008), Contribution of land‐
atmosphere coupling to summer climate variability over the contiguous
United States, J. Geophys. Res., 113, D22109, doi:10.1029/2008JD010136.

Zhou, L. M., C. J. Tucker, R. K. Kaufmann, D. Slayback, N. V. Shabanov,
and R. B. Myneni (2001), Variations in northern vegetation activity
inferred from satellite data of vegetation index during 1981 to 1999,
J. Geophys. Res., 106(D17), 20,069–20,083, doi:10.1029/2000JD000115.

G. Huang, RCE‐TEA and LASG, Institute of Atmospheric Physics,
Chinese Academy of Sciences, Beijing 100029, China.
M. Notaro, Center for Climatic Research, University of Wisconsin‐

Madison, Madison, WI 53706, USA.
L. Wu and J. Zhang, Center for Monsoon System Research, Institute of

Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,
China. (zjy@mail.iap.ac.cn)

ZHANG ET AL.: CLIMATIC INDICES AND CO2 EXCHANGE LINKS D04102D04102

13 of 13


