
ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 23, NO. 5, 2006, 758–766

Analysis and Application of Multiple-Precision Computation

and Round-off Error for Nonlinear Dynamical Systems

WANG Pengfei∗1 (�+�), HUANG Gang1 (� f), and WANG Zaizhi2 (�3�)
1State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG),

Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

2National Climate Center, Beijing 100081

(Received 8 October 2005; revised 25 April 2006)

ABSTRACT

This research reveals the dependency of floating point computation in nonlinear dynamical systems
on machine precision and step-size by applying a multiple-precision approach in the Lorenz nonlinear
equations. The paper also demonstrates the procedures for obtaining a real numerical solution in the
Lorenz system with long-time integration and a new multiple-precision-based approach used to identify
the maximum effective computation time (MECT) and optimal step-size (OS). In addition, the authors
introduce how to analyze round-off error in a long-time integration in some typical cases of nonlinear
systems and present its approximate estimate expression.

Key words: multiple-precision numerical calculation, round-off error, nonlinear dynamical system

doi: 10.1007/s00376-006-0758-y

1. Introduction

Qualitative approaches are adopted in nonlinear
differential equation studies. According to differential
equation theory, such equations have a unique contin-
uous solution when the Lipschitz condition is fulfilled.
Numerical calculation is another popular approach,
but since round-off error exists in the floating point
calculations, the result is simultaneously influenced by
both the discretization error and the round-off error.
Studies have been made on the error analysis of nu-
merical methods in Ordinary Differential Equations
(ODEs), and the classical results of discretization er-
ror can be found in Henrici (1962), Henrici (1963), and
Gear (1971). Henrici (1962, 1963) also studied round-
off error on a fixed-point machine using probability
theory, but the influence of round-off error on long-
time numerical integrations was not investigated. Faye
et al. (1985) introduced the Permutation-Perturbation
method which is very efficient for evaluating round-off
error and consequently for estimating the exact signif-
icant decimal figures of the algorithm’s result. Vignes
(1988, 1993) introduced tools for automatic implemen-
tation of stochastic arithmetic and for evaluating the
accuracy of results provided by direct algorithms per-
formed by a computer. These tools can also determine

the optimal step or the optimal mesh in the approx-
imate algorithms. Neto and Rao (1990) proposed a
stochastic approach to estimate the global errors, es-
pecially in the integration situations that are often
met in flight mechanics and control problems. This
procedure models the errors through the distribution
of zero-mean random variables belonging to stochastic
sequences. The Rigorous Error Analysis method is a
new technology in numerical algorithms, and compli-
cated dynamical systems can be rigorously analyzed by
means of Conley index theory (Mrozek 1996; Berger,
1999).

This research intends to reduce round-off error in
nonlinear dynamical systems by applying the multiple-
precision approach based on Li et al.’s experiments
(2000). The latter’s experiments showed that single-
and-double-precision floating point operations have
important effects on the long-time numerical integra-
tion in nonlinear systems. We improve their experi-
ments as follows. In addition to both single and double
precisions, multiple precisions are also used to conduct
further analysis for Eq. (1) given below and to estab-
lish the relationship between numerical results using
different precisions and step-sizes. We not only eval-
uate the round-off error propagation but also propose
a way to compute the reliable numerical solution of

*E-mail: wpf@mail.iap.ac.cn

NO. 5 WANG ET AL. 759

nonlinear dynamical systems over a long time.
The Optimal Step-size (OS, where in this paper,

the step-size means time step-size unless stated oth-
erwise) and Maximum Effective Computation Time
(MECT) searching scheme is important for the com-
putation of nonlinear dynamical systems. Li et al.
(2000) identified OS and MECT by an optimal search-
ing method. Further, Li et al. (2001) obtained the for-
mulas of OS and MECT through theoretical analysis.
In this paper, we will demonstrate a new multiple-
precision-based approach and therefore provide more
alternatives for identifying OS and MECT.

2. Multiple-precision experiments with a non-
linear system

A computer usually supports both single- and
double-precision floating-point operations defined by
the IEEE Standard 754a, and some computers also
support quadruple precision. Special approaches are
needed for higher precision. In the computer sciences,
there are special libraries to support multiple-precision
computations (Oyanarte, 1990), such as GMP (GNUb

multiple-precision arithmetic library)c, apfloat (High
Performance Arbitrary Precision Arithmetic Package
for C++ and Java)d, MAPM (My Arbitrary Preci-
sion Math library, and MPFR (The Multiple Preci-
sion Floating-Point Reliable Library)e. Though these
libraries are different, all of them can do computing
in a defined precision. Some other application soft-
ware, such as Matlabf and Mapleg can also carry out
multiple-precision computations.

We applied the MPFR/GMP library to these ex-
periments. The MPFR library is a C library for
multiple-precision floating-point computations with
exact rounding. It is based on the GMP multiple-
precision library. The main purpose of MPFR is to
“provide a library for multiple-precision floating-point
computation which is both efficient and has a well-
defined semantics.”h The precision in MPFR is dif-
ferent from the significant digits. For example, sin-
gle precisions and double precisions correspond to 7.22
and 15.95 significant digits respectively, while they cor-
respond to 24- and 53-bits precision respectively in
MPFR.

The classical Lorenz equations introduced by

Lorenz (1963) are given as follows:

dx

dt
= −σx + σy

dy

dt
= γx− y − xz

dz

dt
= xy − βz

(1)

where σ, γ, β are nondimensional constants, and t is
nondimensional time.

In this research, we first consider Eq. (1) without
chaos, when γ = 22.0, σ = 10.0, and β = 8/3. The
initial value is set as (5, 5, 10). Previous studies have
shown that this is a bad initial value (Li et al., 2000).
From the theoretical analysis (Lorenz, 1963; Sparrow,
1982), we know that Eq. (1) with the above initial
value has two attractors (x = ±2

√
14).

In this paper, considering the initial value issue of
Eq. (1) without chaos and with a certain precision and
step-size, we define the convergence computation re-
sult as the final value when t continues to increase.

Ideally, the strict criterion for deciding the final val-
ues is that the solutions to Eq. (1) should be close to
constant even when t increases. The more commonly
used method is to choose a long enough t and the value
at that specific t is identified as the final value. The
final value in our study is the numerical result when
t > 500.0 (t also depends on the precision and a long
enough time for convergence in different experiments).

Equation (1) is a set of nonlinear differential equa-
tions, and it has no analytic solution in general. Hence
we can only use numerical methods to derive the ap-
proximate solutions. In order to discuss the solu-
tion based on a multiple-precision library, a 4-th or-
der Runge-Kutta (RK, see Press et al., 1992) method
is applied as an example to perform the experiments.
Since we choose the parameter without chaos, when
the equation is integrated over a long time, the solu-
tion converges to an attractor.

Tables 1, 2, and 3 show numerical results obtained
from three different systems: Linux, IRIX and AIX,
where h is the step-size. Table 1 presents the final val-
ues of variable x with the C language and with double
precision. When the step-size is 0.01, the same result
is obtained in the three systems. When the step-size is
0.0099999, the values of IRIX and AIX are the same,
but they are different from that obtained by Linux.

ahttp://babbage.cs.qc.edu/courses/cs341/IEEE-754references.html
bhttp://www.gnu.org/
chttp://www.swox.com/gmp/
d http://www.apfloat.org/
ehttp://www.mpfr.org/
fhttp://www.mathworks.com/
ghttp://www.maplesoft.com/
hhttp://www.mpfr.org/

760 MULTIPLE-PRECISION COMPUTATION AND ROUND-OFF ERROR ANALYSIS VOL. 23

Table 1. Final values of variable x with the C language
and with double precision.

h = 0.01 h = 0.0099999

Linux −7.483314773547912 −7.483314773547889

IRIX −7.483314773547912 7.483237136577893

AIX −7.483314773547912 7.483237136577893

Table 2. Final values of variable x with the Fortran lan-
guage and with single precision.

h = 0.01 h = 0.0099999

Linux −7.483299 −7.483300

IRIX 7.483307 −7.483299

AIX −7.483299 −7.483299

Table 3. Final value of variable x with the Fortran lan-
guage and with double precision.

h = 0.01 h = 0.0099999

Linux −7.483314773547912 −7.483314773547928

IRIX −7.483314773547912 −7.483314773547913

AIX −7.483314773547910 7.483314773547833

Table 2 shows the final values of variable x with the
Fortran language and with single precision. When the
step-size is 0.01, the final values of Linux and AIX are
the same, but they differ from that using IRIX. When
the step-size is 0.0099999, all final values of the three
systems are close. Table 3 gives the final values of
variable x with the Fortran language and with double
precision. When the step-size is 0.0099999, all final
values of the three systems are close. When the step-
size is 0.0099999, the final values of IRIX and Linux
are the same, but they differ from the result of AIX.

We can see from Tables 1, 2, and 3 that the same
program can lead to different results because of the
floating point architecture and compiler’s distinctions
in the different systems. For the Lorenz equations with
the initial condition above, we cannot derive the true
final value with single or double precisions.

Figure 1 shows the numerical final values versus
the precisions∗.

When the step-size is 0.01 and the computa-
tion precision reaches a certain point, which we call
PRECh, the final values will not bounce and will be
close to the attractors. That is how we get a final
value. The PRECh varies with step-size h. Both
PRECh values in the two experiments (Figs. 1a, b)

are greater than 53, the bit precision of the double
precision, so only using single or double precision may
not be enough to analyze these nonlinear equations.

The higher precision experiments show that the
bad initial value cannot become a good initial value
when the precision increases.

The solution difference with certain precision be-
tween the numerical solution and the reference value
in the studies applying Lorenz equations is defined as:

Dxyz =
√∑

x,y,z

(Vt − Vt0)2 . (2)

In the equation, V is variable, Vt is the numerical so-
lution at time t, and Vt0 is the reference value (or ref-
erence solution) at time t, which is very close to the
real solution. Since we cannot get the real solution
values of the equations, we will use the reference val-
ues as a substitute for the real values in the following
numerical experiments.

The norm of the reference solution is:

Axyz =
√∑

x,y,z

(Vt0)2 , (3)

and then the relative error of the numerical solution
becomes:

R = Dxyz/Axyz . (4)

Further, to keep the relative error of the numerical
solution R within a limited range (such as R < 1/10),
the effective computation time (ECT) is needed.

The ECT is related to the numerical method and
step-size. Thus the MECT is the maximum time
among all ECTs.

From Eq. (1) and the above parameters, the numer-
ical solution of time t can be achieved when the pre-
cision varies. Here, we only explore the results when
time t is set to 30 (Fig. 2) .

Figure 2 depicts that the two numerical solutions
at h = 0.01 and h = 0.0099999 vary prominently when
the precision is less than 50. On the contrary, both so-
lutions are similar and almost without variation after
50 bits of precision. Therefore, the precision at 50
can be regarded as the effective computation precision
(ECP).

However, even in the ECP, there also exits a differ-
ence between these two step-sizes (Fig. 2), suggesting
that the total error is mainly affected by step-size, and
the step-sizes 0.01 and 0.0099999 may not be the con-
vergent step-sizes. In other words, we have to decrease
the step-size to get the real values.

*When MPFR/GMP is applied in the computation, the results from the different systems are the same. Hence the following

experiments use the result from Linux as an example. To avoid redundant output, the program uses multiple-precision in the

computing process, but some outputs are presented with double precision

NO. 5 WANG ET AL. 761

 19

0 50 100 150 200
-10

-5

0

5

10 (a)

precision

X

0 50 100 150 200
-10

-5

0

5

10 (b)

precision

X

Fig. 1. The final values versus the precision, (a) h=0.01 and (b) h=0.0099999;

0.22=γ .

Fig. 1. The final values versus the precisions, (a) h = 0.01 and (b) h=0.0099999; γ = 22.0.

 20

20 30 40 50 60 70 80 90 100
-15

-10

-5

0

5

10

15

γ=22.0, t=30.0

precision

X

h=0.01
h=0.0099999

Fig. 2. The numerical solutions of time t as the precision changes, h=0.01 and

h=0.0099999, t=30.0.

Fig. 2. The numerical solution of time t as the precision
changes, h = 0.01 and h = 0.0099999, t = 30.0.

-4.5 -4 -3.5 -3 -2.5 -2
-20

-15

-10

-5

0

5

10

15

20

γ=22.0, t=30.0

log(h)

X

h=0.01 - 0.00001

Fig. 3. The numerical solution of time t as the step-size
h changes, t = 30.0, precision=100.

Given the time (t = 30), precision=100 (within
ECP), the numerical solution varies as the step-size
ranges from (h=0.01) to (h=0.0001). Note that the
numerical solution does not converge when h is not
small enough (h>0.0002), and it changes with no evi-
dent pattern. When the step-size h is less than 0.0002,
the numerical solutions tend be constant.

Similar results have also been obtained when the
same experiments are repeated with other initial val-
ues and step-sizes. The experiment results of Eq. (1)
without chaos and with a bad initial value are as fol-
lows:

(1) The ECT exists in the numerical solution of the
nonlinear equation. With a certain computing preci-
sion, the numerical result is indeterminate and sensi-
tive to step-size when t is beyond ECT.

(2) Different ECP values exist in the numerical so-
lution of the nonlinear equation corresponding to dif-
ferent time t values. We can get the numerical solution
close to the real value only if the precision we use in
the method is equal to or greater than the ECP.

(3) The numerical result is determinate when the
initial value, method, and step-size are given while the
precision is infinite, but the result may not be the real
value.

(4) A suitable step-size is needed to get the correct
numerical solution when both the ECT and ECP are
satisfied. However, not all of the step-sizes can lead to
the right result, except when the step-size is close to
the OS.

There are many similarities in the experiments of
the chaotic case within ECT. The main difference be-
tween the chaotic case and non-chaotic case is that
the numerical solutions do not convergent to a final

762 MULTIPLE-PRECISION COMPUTATION AND ROUND-OFF ERROR ANALYSIS VOL. 23

value, and they change continuously without any dis-
tinct pattern.

All the experiments with chaos and without chaos
show that a numerical solution with an accuracy of
a certain number of digits is determinate when the
initial value, method, and step-size are given and the
precision is infinite. Furthermore, a numerical solution
with a given accuracy is determinate when the initial
value, method and step-size are certain and the preci-
sion is big enough. So we can use a finite precision to
do research when we only need a solution of a given
number of digits of accuracy.

The steps to compute the real numerical solution
of Lorenz systems over a long time are: First, choose
a normal step-size (such as 0.01), increase the com-
puting precision, and then obtain the value of the nu-
merical solution with a precision so as to obtain the
ECP. Second, keep the precision higher than the ECP
and decrease the step-size to get the value of the nu-
merical solution with step-size. The convergent step-
size should then be found (called the ECS). Lastly,
compute with a precision higher than the ECP and
a step-size less than the ECS to get a real numerical
solution. How close it is to the real value depends on
the precision and step-size used.

3. Error analysis of some nonlinear systems

Considering the long-time error of nonlinear Eq.
(1), we can use the following formula to describe the
total error:

E = e(t, h) + e(r, t) , (5)

where e(t, h) is the discretization error for nonlinear
ODEs,

‖e(t, h)‖ 6 N1(η)e(0)e
kLΓ∗(t−t0) + Chp ekLΓ∗(t−t0) − 1

kL
,

(6)

where η is variable; N1(η) = 1 when η 6 1, and
N1(η) = η if η > 1; k means k step method; e(0) =

max
0<j6k−1

‖ej‖ such that ej is the maximum initial error

of the k step method; L is the Lipschitz constant;

Γ∗ =
Γ

1− hβ|αk|−1
;

h is step-size; and β are αk are constants; Γ =
sup

j=0,1,2,...
|rj | < ∞; rj are coefficients; C is constant;

and p is the order of the method. More details can be
found in Li et al. (2001).

For a single-step method such as the 4-th order
Runge-Kutta method, e(0) = 0, and the above formula

can be simplified as:

‖e(t, h)‖ 6 Chp ekLΓ∗(t−t0) − 1
kL

. (7)

e(t, h) can be understood as:
e(t, h) = Chpf(t) + ε . (8)

In Eq. (8), p is the order of the method,

f(t) =
ekLΓ∗(t−t0) − 1

kL
,

and ε is a small quantum compared to the first item.
e(r, t) is round-off error, and it corresponds to the

precision and time, and r is the precision in bits.
Considering the real value of t, we can write x(t) as

x, and X(t, h, r) is the numerical solution. We will fur-
ther discuss the application of Eqs. (7) and (8) in the
following three typical cases. The discussion is within
ECT.

Typical Case 1:
How can we obtain a better solution when h is close

to OS with the same time and precision r but different
step-size?{

X1 − x = Chp
1f(t) + ε + e(r, t) ,

X2 − x = Chp
2f(t) + ε + e(r, t) ,

(9)

where X1 = X(t, h1, r), X2 = X(t, h2, r), x = x(t).
When the precision r is very high, and the e(r, t)

becomes a tiny value compared to e(t, h), we get the
approximate equation (we can obtain the relationship
expressed below):{

X1 − x = Chp
1f(t) + ε ,

X2 − x = Chp
2f(t) + ε .

(10)

We can get a series of Xi by changing hi. No mat-
ter whether the order p of the numerical method is
known or not, we can use a curve-fitting method to
obtain the approximate numerical solutions.

The above discussion can be used to get an approx-
imate numerical solution close to the real value faster.
In order to get the best result in the multiple-precision
method, we need to choose a very small step-size (close
to OS), which takes the CPU much time to finish the
computation. The experiments show that when the
step-size is small enough, the results of the various
step-sizes are close to the real values. Hence the re-
sults obtained by using these stepsizes can lead to a
better solution, and save more CPU time.

Typical Case 2:
Consider the equation within ECT when the step-

size h and precision r are the same, but the time t is
different:{

X1 − x(t1) = Chpf(t1) + ε + e(r, t1) ,

X2 − x(t2) = Chpf(t2) + ε + e(r, t2) .
(11)

In Eq. (11), X1 = X(t1, h, r), X2 = X(t2, h, r), x =
x(t).

NO. 5 WANG ET AL. 763

Table 4. The numerical solutions vary with the precision,
h = 0.0001.

Precision (bits) t h X

100 30.0 0.0001 2.9363712434500740

101 30.0 0.0001 2.9363712434500732

102 30.0 0.0001 2.9363712434500728

103 30.0 0.0001 2.9363712434500726

104 30.0 0.0001 2.9363712434500725

105 30.0 0.0001 2.9363712434500724

106 30.0 0.0001 2.9363712434500724

107 30.0 0.0001 2.9363712434500724

108 30.0 0.0001 2.9363712434500724

109 30.0 0.0001 2.9363712434500724

Table 5. The numerical solutions vary with the precision,
h = 0.00001.

Precision (bits) t h X

100 30.0 0.00001 2.9378871138255342

101 30.0 0.00001 2.9378871138255261

102 30.0 0.00001 2.9378871138255222

103 30.0 0.00001 2.9378871138255202

104 30.0 0.00001 2.9378871138255192

105 30.0 0.00001 2.9378871138255187

106 30.0 0.00001 2.9378871138255184

107 30.0 0.00001 2.9378871138255183

108 30.0 0.00001 2.9378871138255182

109 30.0 0.00001 2.9378871138255182

Table 6. The numerical solutions vary with the step-size.

Precision (bits) h t X

100 0.000010 30.0 2.9378871138255342

100 0.000009 30.0 2.9378871656790527

100 0.000008 30.0 2.9378872028521291

100 0.000007 30.0 2.9378872284171930

100 0.000006 30.0 2.9378872450860222

100 0.000005 30.0 2.9378872552095293

100 0.000004 30.0 2.9378872607775470

100 0.000003 30.0 2.9378872634186109

100 0.000002 30.0 2.9378872643997443

100 0.000001 30.0 2.9378872646262659

When the precision r is high, and the value of e(r, t)
becomes a tiny value compared to e(t, h), so we can
obtain the relationship expressed below:{

X1 − x(t1) = Chpf(t1) + ε ,

X2 − x(t2) = Chpf(t2) + ε .
(12)

And we get:
X1 − x(t1)
X2 − x(t2)

=
Chpf(t1) + ε

Chpf(t2) + ε
. (13)

From the above expression, we can know that the
effect of discretization error becomes larger and larger.

The discretization error versus t can be fitted from
the numerical solution of X1 with a bigger step-size
and the value of X2 with a tiny step-size which is close
to the OS.

Typical Case 3:
How can we get a better solution when r →∞ with

the same time and step-size but different precisions r1

and r2?{
X1 − x = Chpf(t) + ε + e(r1, t) ,

X2 − x = Chpf(t2) + ε + e(r2, t) ,
(14)

where X1 = X(t, h, r1), X2 = X(t, h, r2), x = x(t). It
is easy to get:

X1 −X2 = er1 − er2 . (15)

When the precision is very large, er → 0, and we can
use curve fitting to get the approximate er.

After we get the er, we rewrite the equation X1 −
x = Chpf(t) + ε + e(r, t) in (14) as:

x + Chpf(t) + ε = X1 − e(r, t) . (16)

In Eq. (16), the left side of the equation is the numer-
ical solution that only includes discretization error.

When the er2 in Eq. (15) is very small, X1−X2 can
be considered the approximate value of er1. Changing
the step-size h, while keeping h1 = h2 = h, we can
get the curve of er1 which corresponds to step-size h.
Changing t, while keeping t1 = t2 = t, we can get the
curve of er which corresponds to time t.

4. Application of the error analysis method

4.1 To calculate the approximate numerical
solution

We can use the error analysis method to calculate
the approximate numerical solution of a certain time
with multiple precisions.

Tables 4 and 5 are the numerical results of Eq. (1),
and the initial values are the same as in Table 1, t = 30.
The precision ranges from 100 to 109 bits, and the
step-size is 0.0001 and 0.00001.

Tables 4 and 5 indicate that the difference between
the numerical solutions of a 100-bit precision and of a
higher precision is within 10−14.

In the next step, we keep the precision at 100 bits
and change the step-size smoothly from 0.00001 to
0.000001; now we see the differences between numeri-
cal solutions are about 10−9 (Table 6), which is much
greater than the difference of precision (10−14) when
changing from 100 bits to infinite precision. At this
time, the way to decrease the total error is to use a
smaller step-size. Using the approximate formula of
OS from the paper by Li et al. (2001), we know that

764 MULTIPLE-PRECISION COMPUTATION AND ROUND-OFF ERROR ANALYSIS VOL. 23

the OS is about 10−3 at single precision, and we can
estimate the OS at 100-bit precision is about 10−11.

The CPU time used for the computation can be
described as T = t/h × T0, where T0 is the time for
the program to finish one computing step. If the step-
size h decreases by 10−5 times, the total CPU time
will increase by 105 times.

We use the values of step-size h=0.000001,
0.000002, 0.000003,. . ., to conduct a curve-fitting and
get the approximate solution.

Transform Eq. (9) to:
X1 = x + Chp

1f(t) + ε + e(r, t) , (17)
use the p + 1 level approximate of h1:

X1 = x + Chp
1f(t) + C2h

(p+1)
1 f(t) , (18)

and when t = 30, f(t) is constant, so set C ′ = Cf(t)
and C ′ = C2f(t) such that

X1 = x + C ′hp
1 + C ′

2h
p+1
1 . (19)

In this paper, we use the 4-th order RK method,
p = 4. Because a high precision curve-fitting is needed,
we use Maple to do the curve-fitting.

In order to check the effect of fitting more easily,
we use the quadruple precision numerical solution to
do the curve-fitting. Table 7 list the five values of
step-size h=0.000005,. . ., 0.000001.

The fitting result using Maple with 50 significant
digits∗ is:

X =2.9378872646412044651622292881100578732173913043481−

15099915434656.617445520360608695652173922163896956× h4+

1837038259144639.8287873913043478260913696275578548× h5 ,

Where 2.93788726464120446516222928811005 can be
regarded as the approximate numerical solution with
113-bit precision.

4.2 To establish the multiple-precision method
to determine OS and MECT

Li et al. (2000, 2001) identified OS and MECT
by an optimal searching method. The program they
used was written in Fortran under a SGI Origin 2000
computer, in which the system’s single and double pre-
cisions have 7.22 and 15.95 significant digits. They
found the OS to be about 0.005–0.006 and MECT to
be about 17 with single precision.

The initial value and parameters in Fig. 4 are the
same as Fig. 1 except r = 28.0. Figure 4 shows that
the R values at single and double precisions are close
in the early stages of the computation time (a–f), but
after a certain time, the R values become different,

and the result of single precision is changed to no rule
earlier than for double precisions.

The experiments imply that for the same step-size
h, and precisions p1 < p2, when time increases from 0
to greater values, the numerical solution at precision
p1 causes a departure from the real value earlier than
precision p2 does.

Since the result under the precision p2 is more ac-
curate than that of precision p1, we can use the value
where the step-size is h2 (h2 � h) and precision is p2 as
the reference value, and then calculate out the R at the
same time. R varies from time 0, so when R is greater
than 1/10, we regard the time as the ECT of precision
p1 with step-size h. When changing step-size h, such
as from 0.1 to 0.000001, we get many ECTs; the great-
est of these ECTs is the Maximum ECT (MECT) of
precision p1, and the relevant step-size is the OS.

Table 7. The data used for the curve-fitting.

Precision (bits) h t X

113 0.000005 30.0 2.9378872552094974115990977099356235

113 0.000004 30.0 2.9378872607775071697886639759241441

113 0.000003 30.0 2.9378872634185577152520154225013040

113 0.000002 30.0 2.9378872643996646034320160374562533

113 0.000001 30.0 2.9378872646261063867658318153043663

*We use the Least Squares function in Maple to do the curve-fitting

NO. 5 WANG ET AL. 765

 22

0 50 100
0

5

10 (a)

t

R
h=0.0001

0 50 100
0

5

10 (b)

t

R

h=0.0001

0 50 100
0

5

10 (c)

t

R

h=0.001

0 50 100
0

5

10 (d)

t

R

h=0.001

0 50 100
0

5

10 (e)

t

R

h=0.01

0 50 100
0

5

10 (f)

t

R

h=0.01

Fig. 4. The relative error R varies with respect to time, (a, c, e) is at single

precision, (b, d, f) is at double precision, 0.28=γ .

Fig. 4. The relative error R varies with respect to time, (a, c, e) is at single precision, (b,
d, f) is at double precision, r = 28.0.

Table 8. Comparing the real computation value and the fitted value.

h X computed X fitted Fitting error

0.0000001 2.9378872646412029533767103919077796 2.9378872646412029551890562050397597 ∼ 10−17

0.00000001 2.9378872646412044777777660951516018 2.9378872646412044650112303174673176 ∼ 10−16

5. Conclusion and discussion

It may not be enough to use single or double pre-
cision in the analysis of nonlinear equations. The
multiple-precision program can analyze them with
higher precision, especially when a long-time integra-
tion is involved.

The results of higher precision experiments indi-
cate that bad initial values cannot become good initial
values as the precision increases.

Moreover, the procedure for obtaining a real nu-
merical solution of the Lorenz system with long-time
integration is presented in the paper. The numerical

results may be incorrect if a low precision or a step-
size not chosen carefully are used to study the Lorenz
system’s long-time status (such as t > 30.0). Though
we can get the MECT and OS from the theoretical
formula, the computing process is very complex. The
OS and MECT detection method introduced in this
paper can enable the computer to identify them auto-
matically.

The influence of round-off error in nonlinear dy-
namical systems should be well recognized. In this
paper, three analyses of a simple question are put for-
ward, and the approximate method can be used in
some multiple-precision operations.

766 MULTIPLE-PRECISION COMPUTATION AND ROUND-OFF ERROR ANALYSIS VOL. 23

The computing precision affects the nonlinear
equations and even the numerical model computa-
tion. Currently, most computer systems only sup-
port limited hardware precision (such as single, double
and quadruple precision). It can help us perform the
round-off error analysis easier and faster if multiple-
precision is supported by the hardware. Thus, scal-
able precision computer systems and compiler software
should be worked on. The multiple-precision method
used in this paper is CPU-time intensive, especially
when the precision is higher than 200 bits or when do-
ing an OS search. Using a parallel computing method
can help to save computation time and increase effi-
ciency.

Acknowledgments. This study was supported by

the National Key Basic Research and Development Project

of China 2004CB418303, the National Natural Science

foundation of China under Grant Nos. 40305012 and

40475027, and Jiangsu Key Laboratory of Meteorologi-

cal Disaster KLME0601. The authors would like to thank

Prof. Ronghui Huang and Prof. Jianping Li for their useful

suggestions that helped improve this manuscript.

REFERENCES

Berger, A., 1999: Rigorous error bounds for RK methods
in the proof of chaotic behavior. Journal of Compu-
tational and Applied Mathematics, 111(1–2), 13–24.

Faye, J. P., and J. Vignes, 1985: Stochastic approach of the
permutation-perturbation method for round-off error
analysis. Applied Numerical Mathematics, 1(4), 349–
362.

Gear, C. W., 1971: Numerical Initial Value Problems in
Ordinary Differential Equations. Prentice-Hall, En-
glewood Cliffs, 253pp.

Henrici, P., 1962: Discrete Variable Methods in Ordinary
Differential Equations. John Wiley, New York, 187pp.

Henrici, P., 1963: Error Propagation for Difference Meth-
ods. John Wiley, New York, 73pp.

Li Jianping, Zeng Qingcun, and Chou Jifan, 2000: Com-
putational uncertainty principle in nonlinear ordinary
differential equations—I Numerical Results. Science
in China (Series E), 43(5), 449–461.

Li Jianping, Zeng Qingcun, and Chou Jifan, 2001: Com-
putational uncertainty principle in nonlinear ordinary
differential equations—II Theoretical analysis. Sci-
ence in China (Series E), 44(1), 55–74.

Lorenz, E. N., 1963: Deterministic nonperiodic flow. J.
Atmos. Sci., 20, 130–141

Mrozek, M., 1996: Rigorous error analysis of numerical al-
gorithms via symbolic computations. Journal of Sym-
bolic Computation, 22, 435–458.

Neto, A. R., and K. R. Rao, 1990: A stochastic approach
to global error estimation in ODE multistep numeri-
cal integration. Journal of Computational and Applied
Mathematics, 30(3), 257–281.

Oyanarte, P., 1990: MP-A multiple precision package.
Computer Physics Communications, 59(2), 345–358.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, 1992: Numerical Recipes in C. Cambridge
University Press, Cambridge, 965pp.

Sparrow, C., 1982: The Lorenz Equations: Bifurcations,
Chaos and Strange Attractors. Springer-Verlag, New
York, 269pp.

Vignes, J., 1988: Review on stochastic approach to round-
off error analysis and its applications. Mathematics
and Computers in Simulation, 30(6), 481–491.

Vignes, J., 1993: A stochastic arithmetic for reliable sci-
entific computation. Mathematics and Computers in
Simulation, 35(3), 233–261.

